Frédérick Girard, Amélie Garnier, Riley Hughes, Charlie Sarran, Eric Harvey, Beatrix E Beisner
{"title":"Conditions favoring phagotrophy can lead to larger cell sizes in some freshwater mixoplankton.","authors":"Frédérick Girard, Amélie Garnier, Riley Hughes, Charlie Sarran, Eric Harvey, Beatrix E Beisner","doi":"10.1093/plankt/fbae077","DOIUrl":null,"url":null,"abstract":"<p><p>Cell size is a critical regulator of many metabolic processes in protists. We explored whether body size and abundances vary consistently in phytoplankton capable of both autotrophy and heterotrophy (mixoplankton) by manipulating environmental stoichiometric conditions in a mesocosm experiment. We applied two allochthonous subsidy treatments: high C: nutrient ratios (leaves) should favour bacterivory through phagotrophy, while low ratios (insects) should favour autotrophy. We identified three focal mixoplankton taxa, common in our study system and that represented facultative (<i>Cryptomonas</i> sp. and <i>Plagioselmis</i> sp) and more obligate phagotrophs (<i>Ochromonas</i> sp.). <i>Ochromonas</i> was largest in the leaf treatment, which were also associated with larger sizes in <i>Cryptomonas</i> (but not the other cryptophyte). The obligately mixotrophic <i>Ochromonas</i> responded more significantly to conditions favouring phagotrophy than did the facultative phagotrophic cryptophytes. All mixoplankton taxa densities declined with insect subsidies that favour autotrophy. Future research should examine a wider range of mixoplankton under varying ecological conditions.</p>","PeriodicalId":16800,"journal":{"name":"Journal of Plankton Research","volume":"47 1","pages":"fbae077"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plankton Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/plankt/fbae077","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell size is a critical regulator of many metabolic processes in protists. We explored whether body size and abundances vary consistently in phytoplankton capable of both autotrophy and heterotrophy (mixoplankton) by manipulating environmental stoichiometric conditions in a mesocosm experiment. We applied two allochthonous subsidy treatments: high C: nutrient ratios (leaves) should favour bacterivory through phagotrophy, while low ratios (insects) should favour autotrophy. We identified three focal mixoplankton taxa, common in our study system and that represented facultative (Cryptomonas sp. and Plagioselmis sp) and more obligate phagotrophs (Ochromonas sp.). Ochromonas was largest in the leaf treatment, which were also associated with larger sizes in Cryptomonas (but not the other cryptophyte). The obligately mixotrophic Ochromonas responded more significantly to conditions favouring phagotrophy than did the facultative phagotrophic cryptophytes. All mixoplankton taxa densities declined with insect subsidies that favour autotrophy. Future research should examine a wider range of mixoplankton under varying ecological conditions.
期刊介绍:
Journal of Plankton Research publishes innovative papers that significantly advance the field of plankton research, and in particular, our understanding of plankton dynamics.