Two Typical Microstructures of Ti–6.6Al–1.7Mo–2.3V–1.9Zr Alloy Fabricated by Vacuum Hot Pressing of Powders with the Spherical Shape of Particles

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Powder Metallurgy and Metal Ceramics Pub Date : 2023-11-17 DOI:10.1007/s11106-023-00379-0
Yangju Feng, Yunbin Lu, Xuesong Liu
{"title":"Two Typical Microstructures of Ti–6.6Al–1.7Mo–2.3V–1.9Zr Alloy Fabricated by Vacuum Hot Pressing of Powders with the Spherical Shape of Particles","authors":"Yangju Feng,&nbsp;Yunbin Lu,&nbsp;Xuesong Liu","doi":"10.1007/s11106-023-00379-0","DOIUrl":null,"url":null,"abstract":"<p>Two typical microstructures of Ti–6.6Al–1.7Mo–2.3V–1.9Zr (TA15) titanium alloy were successfully fabricated by vacuum hot pressing using TA15 metallic powders of two different sizes with the spherical shape of particles. The size of prior β grains was consistent with the size of the as-received TA15 alloy powder. The microstructure of TA15 alloys differed depending on the size of the initial powder, forming Widmanstätten patterns for the sample from coarse powder or equiaxed microstructure for fine powder. The microstructure evolution during the vacuum hot pressing included solid-state phase transition and powder compact. In the temperature-rise period, the solid-state phase transition occurred (α → β). The anterior β-grain only grew to the original powder interface, which means that it would not coarsen causing its size to exceed that of the original powder. The solid-state phase transition occurred (β → α) when the temperature decreased during the subsequent cooling process. The nuclei of grain boundaries α appeared at the grain boundary of the anterior β-grain. Then the nuclei of grain boundaries α grew together enclosing the anterior β-grain. The grain boundaries α belonged to a certain anterior β-grain and could provide nucleation sites for the α-colonies of the two adjacent anterior β-grains. Finally, the α colonies grew into the anterior β-grain forming the Widmanstätten structure. The two typical microstructures will likely affect the mechanical properties of the TA15 alloys. An improvement in tensile properties was evident in the TA15 alloys (equiaxed microstructure) fabricated from a fine powder compared to their predecessors, consisting of colonies α microstructure fabricated from the coarse powder. To be specific, the tensile strength increased from 849 to 898 MPa and the ductility growth was from 5.5 to 6.5%.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 3-4","pages":"174 - 179"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00379-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two typical microstructures of Ti–6.6Al–1.7Mo–2.3V–1.9Zr (TA15) titanium alloy were successfully fabricated by vacuum hot pressing using TA15 metallic powders of two different sizes with the spherical shape of particles. The size of prior β grains was consistent with the size of the as-received TA15 alloy powder. The microstructure of TA15 alloys differed depending on the size of the initial powder, forming Widmanstätten patterns for the sample from coarse powder or equiaxed microstructure for fine powder. The microstructure evolution during the vacuum hot pressing included solid-state phase transition and powder compact. In the temperature-rise period, the solid-state phase transition occurred (α → β). The anterior β-grain only grew to the original powder interface, which means that it would not coarsen causing its size to exceed that of the original powder. The solid-state phase transition occurred (β → α) when the temperature decreased during the subsequent cooling process. The nuclei of grain boundaries α appeared at the grain boundary of the anterior β-grain. Then the nuclei of grain boundaries α grew together enclosing the anterior β-grain. The grain boundaries α belonged to a certain anterior β-grain and could provide nucleation sites for the α-colonies of the two adjacent anterior β-grains. Finally, the α colonies grew into the anterior β-grain forming the Widmanstätten structure. The two typical microstructures will likely affect the mechanical properties of the TA15 alloys. An improvement in tensile properties was evident in the TA15 alloys (equiaxed microstructure) fabricated from a fine powder compared to their predecessors, consisting of colonies α microstructure fabricated from the coarse powder. To be specific, the tensile strength increased from 849 to 898 MPa and the ductility growth was from 5.5 to 6.5%.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球形粉末真空热压制备Ti-6.6Al-1.7Mo-2.3V-1.9Zr合金的两种典型组织
采用真空热压法制备了两种不同尺寸的球形TA15金属粉末,成功制备了Ti-6.6Al-1.7Mo-2.3V-1.9Zr (TA15)钛合金的两种典型显微组织。β晶粒的大小与TA15合金粉末的大小一致。TA15合金的微观组织随初始粉末尺寸的不同而不同,粗粉试样形成Widmanstätten模式,细粉试样形成等轴组织。真空热压过程中的组织演变包括固态相变和粉末致密。在升温阶段,发生了固态相变(α→β)。前β粒只生长到原粉体界面,不会粗化,使其尺寸超过原粉体。在随后的冷却过程中,随着温度的降低,发生了固态相变(β→α)。α晶界核出现在前晶β晶界。晶界α核聚集在一起,包覆前晶β。晶界α属于某一前β晶,可为相邻两个前β晶的α-菌落提供成核位点。α菌落最终向前晶生长,形成Widmanstätten结构。这两种典型的组织都可能影响TA15合金的力学性能。细粉制备的TA15合金(等轴组织)的拉伸性能明显优于粗粉制备的菌落α组织。拉伸强度由849 MPa提高到898 MPa,塑性由5.5%提高到6.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
期刊最新文献
Properties of Powders Produced by Plasma-Arc Spheroidization of Current-Carrying Fe–Al Flux-Cored Wire Tribotechnical Properties of Copper-Based Antifriction Composites for High-Speed Friction Units of Printing Machines Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures Experimental Studies on the Effect of Destructive Reagents on Metal Structural Elements Structural Creep Sensitivity of ARB-Processed Al/SiC/Cu Bimetallic Composite Strip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1