Microwave Sintering of 3D Printed Composites from Polymers Reinforced with Titanium Nitride Particles

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Powder Metallurgy and Metal Ceramics Pub Date : 2023-11-17 DOI:10.1007/s11106-023-00380-7
O. B. Zgalat-Lozynskyy, O. O. Matviichuk, R. V. Litvyn, O. M. Myslyvchenko, N. O. Zgalat-Lozynska
{"title":"Microwave Sintering of 3D Printed Composites from Polymers Reinforced with Titanium Nitride Particles","authors":"O. B. Zgalat-Lozynskyy, O. O. Matviichuk, R. V. Litvyn, O. M. Myslyvchenko, N. O. Zgalat-Lozynska","doi":"10.1007/s11106-023-00380-7","DOIUrl":null,"url":null,"abstract":"<p>The production of intricate samples from polymer–ceramic composites employing fused deposition modeling was studied. The samples were subjected to high-temperature heat treatment in microwave furnaces to yield titanium nitride ceramics. The conditions for making polymer–ceramic materials from polypropylene and titanium nitride powders and 3D printing conditions for associated intricate parts were examined. The TiN–polypropylene composite was produced at a temperature of 190°C through extrusion of a previously prepared homogeneous mixture with a reinforcement content of 10, 20, 40, 46, 50, and 60 vol.% TiN. Using fused deposition modeling, a gear-shaped part made of the polymer–ceramic material was printed. The printed samples with 20 and 40 vol.% TiN were heat-treated in microwave furnaces in air in a carbon black backfill and in a nitrogen flow. Following the heat treatment in microwave furnaces, the samples preserved their initial shape. The composite samples treated in a carbon black backfill in air exhibited a porosity of ~38% and those treated in a nitrogen flow showed a porosity of ~22%. The samples subjected to microwave heat treatment in a carbon black backfill in air underwent sintering and partial oxidation. After microwave heat treatment in a nitrogen flow, the titanium nitride samples showed higher density and bimodal structure with titanium nitride grains varying from several micrometers to 400–200 nm. The microhardness of the samples heat-treated in a carbon black backfill was 6.5–8.5 GPa and that of the samples treated in a nitrogen flow was 16 GPa.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11106-023-00380-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The production of intricate samples from polymer–ceramic composites employing fused deposition modeling was studied. The samples were subjected to high-temperature heat treatment in microwave furnaces to yield titanium nitride ceramics. The conditions for making polymer–ceramic materials from polypropylene and titanium nitride powders and 3D printing conditions for associated intricate parts were examined. The TiN–polypropylene composite was produced at a temperature of 190°C through extrusion of a previously prepared homogeneous mixture with a reinforcement content of 10, 20, 40, 46, 50, and 60 vol.% TiN. Using fused deposition modeling, a gear-shaped part made of the polymer–ceramic material was printed. The printed samples with 20 and 40 vol.% TiN were heat-treated in microwave furnaces in air in a carbon black backfill and in a nitrogen flow. Following the heat treatment in microwave furnaces, the samples preserved their initial shape. The composite samples treated in a carbon black backfill in air exhibited a porosity of ~38% and those treated in a nitrogen flow showed a porosity of ~22%. The samples subjected to microwave heat treatment in a carbon black backfill in air underwent sintering and partial oxidation. After microwave heat treatment in a nitrogen flow, the titanium nitride samples showed higher density and bimodal structure with titanium nitride grains varying from several micrometers to 400–200 nm. The microhardness of the samples heat-treated in a carbon black backfill was 6.5–8.5 GPa and that of the samples treated in a nitrogen flow was 16 GPa.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化钛颗粒增强聚合物3D打印复合材料的微波烧结研究
采用熔融沉积模型研究了聚合物-陶瓷复合材料复杂样品的制备。样品在微波炉中进行高温热处理,得到氮化钛陶瓷。研究了聚丙烯和氮化钛粉末制备聚合物陶瓷材料的条件以及相关复杂零件的3D打印条件。TiN -聚丙烯复合材料是在190℃的温度下,通过挤压预先制备的均匀混合物,增强含量为10,20,40,46,50,60 vol.% TiN。采用熔融沉积建模的方法,打印了由聚合物陶瓷材料制成的齿轮形零件。将含有20和40体积% TiN的印刷样品在微波炉中以炭黑充填体和氮气流在空气中进行热处理。在微波炉中热处理后,样品保持了原来的形状。空气中炭黑充填体处理的复合材料的孔隙率为~38%,氮气流处理的复合材料的孔隙率为~22%。样品在炭黑充填体中微波热处理后,在空气中发生烧结和部分氧化。在氮气流中微波热处理后,氮化钛样品表现出更高的密度和双峰结构,氮化钛晶粒从几微米到400-200 nm不等。炭黑充填体热处理样品的显微硬度为6.5 ~ 8.5 GPa,氮流处理样品的显微硬度为16 GPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
期刊最新文献
Structure and Mechanical Properties of WC-Based Hardmetal with a High-Entropy NiFeCrWMo Binder Effective Plastic Properties of Porous Materials with an Inverse Opal Structure DEM Research on Stress and Force Chains during Warm Compaction of Intricate Parts Evolution of Pore Structure in Compacts Produced from Nickel Carbonyl Powders during Sintering Study of Geometric Parameters and Mechanical Properties of Metal-Based Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1