Harikumar Pallathadka, Ahmed huseen Redhee, Sarah Jawad Shoja, Ameer H. Al-Rubaye, BJ. Brisset
{"title":"Structural Creep Sensitivity of ARB-Processed Al/SiC/Cu Bimetallic Composite Strip","authors":"Harikumar Pallathadka, Ahmed huseen Redhee, Sarah Jawad Shoja, Ameer H. Al-Rubaye, BJ. Brisset","doi":"10.1007/s11106-024-00441-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, the creep behavior, mechanical properties, and microstructure evolution of AA 1050/SiC/Cu composite strips fabricated by accumulative roll bonding (ARB) process are experimentally investigated. All specimens were fabricated with different SiC wt.% with a maximum of eight cumulative cycles of ARB. The study of creep behavior and mechanical properties showed the formation of a 17 μm atomic diffusion layer at the interface during ARB under three creep loading conditions, namely 35 MPa at 225°C, 35 MPa at 275°C, and 30 MPa at 225°C. An intermetallic compound formed near Al, resulting in a 40% increase in interface thickness with increasing temperature at constant stress. However, the creep failure time decreased by 44% and the stress level decreased by 13% at a constant temperature without any significant effect on the interface thickness. In different conditions, it was observed that at a constant temperature with an increase in stress level, the second steady state creep rate of the creep curve reaches to 39%, while it decreases to 2% with a small increase in temperature. It can be concluded that the applied temperature and stress affect the creep properties and especially lead to an increase in the steady-state creep rate of the creep curves with higher stresses. This trend was the opposite for the creep temperature at higher temperature levels. Furthermore, dynamic recrystallization was observed through the crystalline structure of the samples.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"63 1-2","pages":"95 - 106"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00441-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the creep behavior, mechanical properties, and microstructure evolution of AA 1050/SiC/Cu composite strips fabricated by accumulative roll bonding (ARB) process are experimentally investigated. All specimens were fabricated with different SiC wt.% with a maximum of eight cumulative cycles of ARB. The study of creep behavior and mechanical properties showed the formation of a 17 μm atomic diffusion layer at the interface during ARB under three creep loading conditions, namely 35 MPa at 225°C, 35 MPa at 275°C, and 30 MPa at 225°C. An intermetallic compound formed near Al, resulting in a 40% increase in interface thickness with increasing temperature at constant stress. However, the creep failure time decreased by 44% and the stress level decreased by 13% at a constant temperature without any significant effect on the interface thickness. In different conditions, it was observed that at a constant temperature with an increase in stress level, the second steady state creep rate of the creep curve reaches to 39%, while it decreases to 2% with a small increase in temperature. It can be concluded that the applied temperature and stress affect the creep properties and especially lead to an increase in the steady-state creep rate of the creep curves with higher stresses. This trend was the opposite for the creep temperature at higher temperature levels. Furthermore, dynamic recrystallization was observed through the crystalline structure of the samples.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.