Markov-Switching Models with Unknown Error Distributions: Identification and Inference Within the Bayesian Framework

Shih-Tang Hwu, Chang-Jin Kim
{"title":"Markov-Switching Models with Unknown Error Distributions: Identification and Inference Within the Bayesian Framework","authors":"Shih-Tang Hwu, Chang-Jin Kim","doi":"10.1515/snde-2022-0055","DOIUrl":null,"url":null,"abstract":"The basic Markov-switching model has been extended in various ways ever since the seminal work of Hamilton (1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.” <jats:italic>Econometrica</jats:italic> 57: 357–84). However, the estimation of Markov-switching models in the literature has relied upon parametric assumptions on the distribution of the error term. In this paper, we present a Bayesian approach for estimating Markov-switching models with unknown and potentially non-normal error distributions. We approximate the unknown distribution of the error term by the Dirichlet process mixture of normals, in which the number of mixtures is treated as a parameter to estimate. In doing so, we pay special attention to the identification of the model. We then apply the proposed model and MCMC procedure to the growth of the postwar U.S. industrial production index. Our model can effectively control for irregular components that are not related to business conditions. This leads to sharp and accurate inferences on recession probabilities.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"79 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The basic Markov-switching model has been extended in various ways ever since the seminal work of Hamilton (1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.” Econometrica 57: 357–84). However, the estimation of Markov-switching models in the literature has relied upon parametric assumptions on the distribution of the error term. In this paper, we present a Bayesian approach for estimating Markov-switching models with unknown and potentially non-normal error distributions. We approximate the unknown distribution of the error term by the Dirichlet process mixture of normals, in which the number of mixtures is treated as a parameter to estimate. In doing so, we pay special attention to the identification of the model. We then apply the proposed model and MCMC procedure to the growth of the postwar U.S. industrial production index. Our model can effectively control for irregular components that are not related to business conditions. This leads to sharp and accurate inferences on recession probabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
误差分布未知的马尔可夫切换模型:贝叶斯框架下的识别与推理
自从Hamilton(1989)的开创性工作以来,基本的马尔可夫开关模型已经以各种方式得到了扩展。非平稳时间序列和经济周期经济分析的新方法。计量经济学[j];然而,文献中马尔可夫切换模型的估计依赖于误差项分布的参数假设。在本文中,我们提出了一种贝叶斯方法来估计具有未知和潜在非正态误差分布的马尔可夫切换模型。我们用Dirichlet过程混合正态来近似误差项的未知分布,其中混合的数目作为一个参数来估计。在此过程中,我们特别注意模型的识别。然后,我们将提出的模型和MCMC程序应用于战后美国工业生产指数的增长。我们的模型可以有效地控制与业务条件无关的不规则组件。这导致了对衰退概率的尖锐而准确的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic Properties of ReLU FFN Sieve Estimators Multivariate Stochastic Volatility with Co-Heteroscedasticity Heterogeneity, Jumps and Co-Movements in Transmission of Volatility Spillovers Among Cryptocurrencies Heterogeneous Volatility Information Content for the Realized GARCH Modeling and Forecasting Volatility Determination of the Number of Breaks in Heterogeneous Panel Data Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1