A Dynamic Latent-Space Model for Asset Clustering

Roberto Casarin, Antonio Peruzzi
{"title":"A Dynamic Latent-Space Model for Asset Clustering","authors":"Roberto Casarin, Antonio Peruzzi","doi":"10.1515/snde-2022-0111","DOIUrl":null,"url":null,"abstract":"Periods of financial turmoil are not only characterized by higher correlation across assets but also by modifications in their overall clustering structure. In this work, we develop a dynamic Latent-Space mixture model for capturing changes in the clustering structure of financial assets at a fine scale. Through this model, we are able to project stocks onto a lower dimensional manifold and detect the presence of clusters. The infinite-mixture assumption ensures tractability in inference and accommodates cases in which the number of clusters is large. The Bayesian framework we rely on accounts for uncertainty in the parameters’ space and allows for the inclusion of prior knowledge. After having tested our model’s effectiveness and inference on a suitable synthetic dataset, we apply the model to the cross-correlation series of two reference stock indices. Our model correctly captures the presence of time-varying asset clustering. Moreover, we notice how assets’ latent coordinates may be related to relevant financial factors such as market capitalization and volatility. Finally, we find further evidence that the number of clusters seems to soar in periods of financial distress.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Periods of financial turmoil are not only characterized by higher correlation across assets but also by modifications in their overall clustering structure. In this work, we develop a dynamic Latent-Space mixture model for capturing changes in the clustering structure of financial assets at a fine scale. Through this model, we are able to project stocks onto a lower dimensional manifold and detect the presence of clusters. The infinite-mixture assumption ensures tractability in inference and accommodates cases in which the number of clusters is large. The Bayesian framework we rely on accounts for uncertainty in the parameters’ space and allows for the inclusion of prior knowledge. After having tested our model’s effectiveness and inference on a suitable synthetic dataset, we apply the model to the cross-correlation series of two reference stock indices. Our model correctly captures the presence of time-varying asset clustering. Moreover, we notice how assets’ latent coordinates may be related to relevant financial factors such as market capitalization and volatility. Finally, we find further evidence that the number of clusters seems to soar in periods of financial distress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资产聚类的动态潜在空间模型
金融动荡时期的特点不仅是资产之间的相关性较高,而且它们的整体聚类结构也发生了变化。在这项工作中,我们开发了一个动态的潜在空间混合模型,用于在精细尺度上捕捉金融资产聚类结构的变化。通过这个模型,我们能够将股票投射到一个较低维度的流形上,并检测到集群的存在。无限混合假设确保了推理的可追溯性,并适应了簇数较大的情况。我们所依赖的贝叶斯框架考虑了参数空间中的不确定性,并允许包含先验知识。在一个合适的合成数据集上测试了我们的模型的有效性和推断后,我们将模型应用于两个参考股票指数的相互关联序列。我们的模型正确地捕获了时变资产聚类的存在。此外,我们注意到资产的潜在坐标如何与相关的金融因素(如市值和波动性)相关。最后,我们发现进一步的证据表明,集群的数量似乎在金融危机期间飙升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic Properties of ReLU FFN Sieve Estimators Multivariate Stochastic Volatility with Co-Heteroscedasticity Heterogeneity, Jumps and Co-Movements in Transmission of Volatility Spillovers Among Cryptocurrencies Heterogeneous Volatility Information Content for the Realized GARCH Modeling and Forecasting Volatility Determination of the Number of Breaks in Heterogeneous Panel Data Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1