Xiaoyi Jiang , Kathryn A. Whitehead , Nils Arneborg , Yong Fang , Jens Risbo
{"title":"Understanding bacterial surface and adhesion properties and the implications for Pickering stabilization of colloidal structures","authors":"Xiaoyi Jiang , Kathryn A. Whitehead , Nils Arneborg , Yong Fang , Jens Risbo","doi":"10.1016/j.cocis.2023.101767","DOIUrl":null,"url":null,"abstract":"<div><p><span>Gram-positive bacteria can be considered as structural building blocks adhering to interfaces and taking part in the formation of colloidal structures depending on their surface chemistry and properties. The chemical composition and spatial conformation of the Gram-positive bacterial cell wall, particularly of the species </span><em>Lactobacillus</em><span><span><span>, determine their surface properties and adhesion behaviors. One application of bacterial adhesion can be the stabilization of colloidal structures via a Pickering mechanism. The natural composition of Gram-positive bacteria renders abundant hydrophilic surface </span>polysaccharides due to the presence of a thick </span>peptidoglycan layer, making it unfavorable for their adsorption at interfaces, however, this property provides sufficient binding sites to allow surface modification. Understanding the fundamental physicochemical forces governing bacterial adhesion helps to reveal their potential applications as Pickering particles. The novelty of this work is that this review summarizes the major non-specific interactions occurring between bacteria approaching a surface, the commonalities and differences of bacteria to Pickering particles, and how a series of simple and advanced colloidal structures can be stabilized by natural and surface-modified bacteria.</span></p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000924","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gram-positive bacteria can be considered as structural building blocks adhering to interfaces and taking part in the formation of colloidal structures depending on their surface chemistry and properties. The chemical composition and spatial conformation of the Gram-positive bacterial cell wall, particularly of the species Lactobacillus, determine their surface properties and adhesion behaviors. One application of bacterial adhesion can be the stabilization of colloidal structures via a Pickering mechanism. The natural composition of Gram-positive bacteria renders abundant hydrophilic surface polysaccharides due to the presence of a thick peptidoglycan layer, making it unfavorable for their adsorption at interfaces, however, this property provides sufficient binding sites to allow surface modification. Understanding the fundamental physicochemical forces governing bacterial adhesion helps to reveal their potential applications as Pickering particles. The novelty of this work is that this review summarizes the major non-specific interactions occurring between bacteria approaching a surface, the commonalities and differences of bacteria to Pickering particles, and how a series of simple and advanced colloidal structures can be stabilized by natural and surface-modified bacteria.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.