Exploring the world of rhamnolipids: A critical review of their production, interfacial properties, and potential application

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2023-12-04 DOI:10.1016/j.cocis.2023.101780
Eduardo Guzmán , Francisco Ortega , Ramón G. Rubio
{"title":"Exploring the world of rhamnolipids: A critical review of their production, interfacial properties, and potential application","authors":"Eduardo Guzmán ,&nbsp;Francisco Ortega ,&nbsp;Ramón G. Rubio","doi":"10.1016/j.cocis.2023.101780","DOIUrl":null,"url":null,"abstract":"<div><p><span>Rhamnolipids are very promising sugar-based biosurfactants, generally produced by bacteria, with a wide range of properties that can be exploited at an industrial and technological level, e.g. in cosmetics, food science, or oil recovery, to provide benefits for human health and the environment. This has led to intensive research into optimizing their production to increase yields and minimize costs, which is challenging because biotechnological methods for rhamnolipid production result in complex product mixtures and require the introduction of complex separation strategies to ensure the purity of the rhamnolipid obtained. This is an important issue for the introduction of rhamnolipids to the market due to the differences that exist between the properties of the different congeners. This review attempts to provide an overview of the </span>interfacial properties, potential applications, and recent advances in understanding the molecular mechanisms that govern the adsorption to interfaces and assembly in solution of rhamnolipids. In addition, the review also discusses some general aspects related to the production and purification methods of rhamnolipids, highlighting the need for further research to fully exploit their potential. It is hoped that this review will contribute to the growing body of knowledge about rhamnolipids and stimulate further research in this field.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"69 ","pages":"Article 101780"},"PeriodicalIF":7.9000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902942300105X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rhamnolipids are very promising sugar-based biosurfactants, generally produced by bacteria, with a wide range of properties that can be exploited at an industrial and technological level, e.g. in cosmetics, food science, or oil recovery, to provide benefits for human health and the environment. This has led to intensive research into optimizing their production to increase yields and minimize costs, which is challenging because biotechnological methods for rhamnolipid production result in complex product mixtures and require the introduction of complex separation strategies to ensure the purity of the rhamnolipid obtained. This is an important issue for the introduction of rhamnolipids to the market due to the differences that exist between the properties of the different congeners. This review attempts to provide an overview of the interfacial properties, potential applications, and recent advances in understanding the molecular mechanisms that govern the adsorption to interfaces and assembly in solution of rhamnolipids. In addition, the review also discusses some general aspects related to the production and purification methods of rhamnolipids, highlighting the need for further research to fully exploit their potential. It is hoped that this review will contribute to the growing body of knowledge about rhamnolipids and stimulate further research in this field.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索鼠李糖脂的世界:对其生产、界面性质和潜在应用的评述
鼠李糖脂是一种非常有前途的糖基生物表面活性剂,通常由细菌产生,具有广泛的特性,可以在工业和技术层面上加以利用,例如在化妆品、食品科学或石油回收方面,为人类健康和环境带来益处。这导致了对优化其生产以提高产量和降低成本的深入研究,这是具有挑战性的,因为生产鼠李糖脂的生物技术方法导致复杂的产品混合物,并且需要引入复杂的策略来确保所获得的鼠李糖脂的纯度。由于不同同系物的性质存在差异,这是将鼠李糖脂引入市场的一个重要问题。本文综述了鼠李糖脂的界面特性、潜在的应用以及控制其在溶液中吸附和组装的分子机制的最新进展。此外,本文还对鼠李糖脂的生产和纯化方法进行了综述,指出需要进一步研究以充分发挥其潜力。希望本文的综述能对鼠李糖脂的认识有所贡献,并促进该领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
Data-driven techniques in rheology: Developments, challenges and perspective Understanding elasticity and swellability of polymer gels from a perspective of polymer/solvent interaction Dye-sensitized solar cells (DSSC): Principles, materials and working mechanism A glance at the future. Biosurfactants at the interface between colloids and surface science, from academia to industry Fundamentals in organic dyes for perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1