Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geoscientific Instrumentation Methods and Data Systems Pub Date : 2022-10-25 DOI:10.5194/gi-11-359-2022
Callum Rollo, Karen J. Heywood, Rob A. Hall
{"title":"Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier","authors":"Callum Rollo, Karen J. Heywood, Rob A. Hall","doi":"10.5194/gi-11-359-2022","DOIUrl":null,"url":null,"abstract":"Thermohaline staircases are stepped structures of alternating thick mixed layers and thin high-gradient interfaces. These structures can be up to several tens of metres thick and are associated with double-diffusive mixing. Thermohaline staircases occur across broad swathes of the Arctic and tropical and subtropical oceans and can increase rates of diapycnal mixing by up to 5 times the background rate, driving substantial nutrient fluxes to the upper ocean. In this study, we present an improved classification algorithm to detect thermohaline staircases in ocean glider profiles. We use a dataset of 1162 glider profiles from the tropical North Atlantic collected in early 2020 at the edge of a known thermohaline staircase region. The algorithm identifies thermohaline staircases in 97.7 % of profiles that extend deeper than 300 m. We validate our algorithm against previous results obtained from algorithmic classification of Argo float profiles. Using fine-resolution temperature data from a fast-response thermistor on one of the gliders, we explore the effect of varying vertical bin sizes on detected thermohaline staircases. Our algorithm builds on previous work by adding improved flexibility and the ability to classify staircases from profiles with noisy salinity data. Using our results, we propose that the incidence of thermohaline staircases is limited by strong background vertical gradients in conservative temperature and absolute salinity.","PeriodicalId":48742,"journal":{"name":"Geoscientific Instrumentation Methods and Data Systems","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Instrumentation Methods and Data Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gi-11-359-2022","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermohaline staircases are stepped structures of alternating thick mixed layers and thin high-gradient interfaces. These structures can be up to several tens of metres thick and are associated with double-diffusive mixing. Thermohaline staircases occur across broad swathes of the Arctic and tropical and subtropical oceans and can increase rates of diapycnal mixing by up to 5 times the background rate, driving substantial nutrient fluxes to the upper ocean. In this study, we present an improved classification algorithm to detect thermohaline staircases in ocean glider profiles. We use a dataset of 1162 glider profiles from the tropical North Atlantic collected in early 2020 at the edge of a known thermohaline staircase region. The algorithm identifies thermohaline staircases in 97.7 % of profiles that extend deeper than 300 m. We validate our algorithm against previous results obtained from algorithmic classification of Argo float profiles. Using fine-resolution temperature data from a fast-response thermistor on one of the gliders, we explore the effect of varying vertical bin sizes on detected thermohaline staircases. Our algorithm builds on previous work by adding improved flexibility and the ability to classify staircases from profiles with noisy salinity data. Using our results, we propose that the incidence of thermohaline staircases is limited by strong background vertical gradients in conservative temperature and absolute salinity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自动分类器对热带北大西洋热盐梯的滑翔机观测
温盐阶梯是由厚混合层和薄高梯度界面交替构成的阶梯结构。这些结构可达几十米厚,并与双扩散混合有关。温盐阶梯出现在北极、热带和亚热带海洋的大片地区,可使底环流混合速率提高5倍,推动大量营养物质流向上层海洋。在这项研究中,我们提出了一种改进的分类算法来检测海洋滑翔机剖面中的温盐阶梯。我们使用了2020年初在一个已知的温盐阶梯区域边缘收集的来自热带北大西洋的1162个滑翔机剖面数据集。该算法在延伸深度超过300米的剖面中识别出97.7%的温盐楼梯。我们通过Argo浮子剖面的算法分类验证了我们的算法。利用其中一个滑翔机上的快速响应热敏电阻的精细分辨率温度数据,我们探索了不同垂直桶尺寸对检测到的热盐阶梯的影响。我们的算法建立在之前工作的基础上,增加了灵活性,并能够从具有噪声盐度数据的剖面中对楼梯进行分类。根据我们的研究结果,我们认为温盐阶梯的发生受到保守温度和绝对盐度的强背景垂直梯度的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscientific Instrumentation Methods and Data Systems
Geoscientific Instrumentation Methods and Data Systems GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
3.70
自引率
0.00%
发文量
23
审稿时长
37 weeks
期刊介绍: Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following: concepts, design, and description of instrumentation and data systems; retrieval techniques of scientific products from measurements; calibration and data quality assessment; uncertainty in measurements; newly developed and planned research platforms and community instrumentation capabilities; major national and international field campaigns and observational research programs; new observational strategies to address societal needs in areas such as monitoring climate change and preventing natural disasters; networking of instruments for enhancing high temporal and spatial resolution of observations. GI has an innovative two-stage publication process involving the scientific discussion forum Geoscientific Instrumentation, Methods and Data Systems Discussions (GID), which has been designed to do the following: foster scientific discussion; maximize the effectiveness and transparency of scientific quality assurance; enable rapid publication; make scientific publications freely accessible.
期刊最新文献
Comparing triple and single Doppler lidar wind measurements with sonic anemometer data based on a new filter strategy for virtual tower measurements Managing Data of Sensor-Equipped Transportation Networks using Graph Databases Airborne electromagnetic data levelling based on the structured variational method A multiplexing system for quantifying oxygen fractionation factors in closed chambers Development of an integrated analytical platform of clay minerals separation, characterization and 40K/40Ar dating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1