A new tool for the estimation of Ground-Based InSAR acquisition characteristics before starting installation and monitoring survey

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geoscientific Instrumentation Methods and Data Systems Pub Date : 2023-11-21 DOI:10.5194/egusphere-2023-2489
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, Michel Jaboyedoff
{"title":"A new tool for the estimation of Ground-Based InSAR acquisition characteristics before starting installation and monitoring survey","authors":"Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, Michel Jaboyedoff","doi":"10.5194/egusphere-2023-2489","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Synthetic Aperture Radar (SAR) acquisition can be performed from satellites or from the ground by means of a so-called GB-InSAR (Ground-Based Interferometry SAR), but the signal emission and the output image geometry slightly differ between the two acquisition modes. Those differences are rarely mentioned in the literature. This paper proposes to compare satellite and GB-InSAR in terms of (1) acquisition characteristics and parameters to consider; (2) SAR image resolution; (3) geometric distortions that are foreshortening, layover and shadowing. If in the case of satellites SAR, the range and azimuth resolutions are known and constant along the orbit path, in the case of GB-InSAR their values are terrain-dependent. It is worth estimating the results of a GB-InSAR acquisition one can expect in terms of range and azimuth resolution, Line of Sight (LoS) distance and geometric distortions to select the best installation location when several are possible. We developed a tool which estimates those parameters from a Digital Elevation Model (DEM), knowing the GB-InSAR and the Slope of Interest (SoI) coordinates. This tool, written in MATLAB, was tested on a simple synthetic point cloud representing a cliff with a progressive slope angle to highlight the influence of the SoI geometry on the acquisition characteristics and on two real cases; cliffs located in Switzerland, one in the Ticino canton and on in the Vaud canton.","PeriodicalId":48742,"journal":{"name":"Geoscientific Instrumentation Methods and Data Systems","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Instrumentation Methods and Data Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-2489","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Synthetic Aperture Radar (SAR) acquisition can be performed from satellites or from the ground by means of a so-called GB-InSAR (Ground-Based Interferometry SAR), but the signal emission and the output image geometry slightly differ between the two acquisition modes. Those differences are rarely mentioned in the literature. This paper proposes to compare satellite and GB-InSAR in terms of (1) acquisition characteristics and parameters to consider; (2) SAR image resolution; (3) geometric distortions that are foreshortening, layover and shadowing. If in the case of satellites SAR, the range and azimuth resolutions are known and constant along the orbit path, in the case of GB-InSAR their values are terrain-dependent. It is worth estimating the results of a GB-InSAR acquisition one can expect in terms of range and azimuth resolution, Line of Sight (LoS) distance and geometric distortions to select the best installation location when several are possible. We developed a tool which estimates those parameters from a Digital Elevation Model (DEM), knowing the GB-InSAR and the Slope of Interest (SoI) coordinates. This tool, written in MATLAB, was tested on a simple synthetic point cloud representing a cliff with a progressive slope angle to highlight the influence of the SoI geometry on the acquisition characteristics and on two real cases; cliffs located in Switzerland, one in the Ticino canton and on in the Vaud canton.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于地基InSAR采集特性预估的新工具
摘要。合成孔径雷达(SAR)的采集可以从卫星上进行,也可以通过所谓的GB-InSAR(地基干涉SAR)从地面进行,但是两种采集模式之间的信号发射和输出图像几何形状略有不同。这些差异在文献中很少被提及。本文提出了卫星与GB-InSAR在以下方面的比较:(1)采集特性和需要考虑的参数;(2) SAR图像分辨率;(3)缩短、停留和阴影等几何畸变。如果在卫星SAR的情况下,距离和方位角分辨率是已知的,并且沿着轨道路径是恒定的,那么在GB-InSAR的情况下,它们的值与地形有关。在可能的情况下,从距离和方位角分辨率、视线(LoS)距离和几何畸变等方面估计GB-InSAR采集的结果是值得的,以便选择最佳安装位置。我们开发了一种工具,可以根据数字高程模型(DEM)估计这些参数,知道GB-InSAR和兴趣斜率(SoI)坐标。该工具是用MATLAB编写的,在一个简单的合成点云上进行了测试,该点云代表一个坡度渐变的悬崖,以突出SoI几何形状对采集特性的影响,并在两个实际案例中进行了测试;悬崖位于瑞士,一个在提契诺州,另一个在沃州。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscientific Instrumentation Methods and Data Systems
Geoscientific Instrumentation Methods and Data Systems GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
3.70
自引率
0.00%
发文量
23
审稿时长
37 weeks
期刊介绍: Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following: concepts, design, and description of instrumentation and data systems; retrieval techniques of scientific products from measurements; calibration and data quality assessment; uncertainty in measurements; newly developed and planned research platforms and community instrumentation capabilities; major national and international field campaigns and observational research programs; new observational strategies to address societal needs in areas such as monitoring climate change and preventing natural disasters; networking of instruments for enhancing high temporal and spatial resolution of observations. GI has an innovative two-stage publication process involving the scientific discussion forum Geoscientific Instrumentation, Methods and Data Systems Discussions (GID), which has been designed to do the following: foster scientific discussion; maximize the effectiveness and transparency of scientific quality assurance; enable rapid publication; make scientific publications freely accessible.
期刊最新文献
Comparing triple and single Doppler lidar wind measurements with sonic anemometer data based on a new filter strategy for virtual tower measurements Managing Data of Sensor-Equipped Transportation Networks using Graph Databases Airborne electromagnetic data levelling based on the structured variational method A multiplexing system for quantifying oxygen fractionation factors in closed chambers Development of an integrated analytical platform of clay minerals separation, characterization and 40K/40Ar dating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1