Lin Liu, Xin Xu, Jing Wu, Lin Zhang, Jialiang Li, Xiaoyu Zeng
{"title":"Codeposition of Gallic Acid and Polyethylene Imine on Carbon Fiber Surfaces to Enhance Interfacial Properties of Epoxy Composites","authors":"Lin Liu, Xin Xu, Jing Wu, Lin Zhang, Jialiang Li, Xiaoyu Zeng","doi":"10.1134/S1560090423701270","DOIUrl":null,"url":null,"abstract":"<p>Inspired by mussel heuristic chemistry, a novel method for improving surface wettability and adhesion of carbon fibers with epoxy resins was proposed by codepositing gallic acid and polyethylene imine on the carbon fiber surfaces in a convenient operation. The results of scanning electron microscopy, infrared, Raman and X-ray photoelectron spectra revealed that gallic acid and polyethylene imine could undergo Michael addition or Schiff base reaction and codeposit on the carbon fiber surfaces successfully. The gallic acid-polyethylene imine codeposited carbon fibers were used to fabricate epoxy matrix composites. The results of mechanical tests showed that interlaminar shear strength, flexural modulus and strength of the gallic acid-polyethylene imine codeposited carbon fiber composite were increased by 27, 38, and 27% respectively, compared with those of the untreated carbon fiber composite. The conclusion can be drawn that the gallic acid-polyethylene imine codeposition is an effective method for improving interfacial properties of carbon fiber reinforced epoxy resin matrix composites.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 5","pages":"639 - 647"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090423701270","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by mussel heuristic chemistry, a novel method for improving surface wettability and adhesion of carbon fibers with epoxy resins was proposed by codepositing gallic acid and polyethylene imine on the carbon fiber surfaces in a convenient operation. The results of scanning electron microscopy, infrared, Raman and X-ray photoelectron spectra revealed that gallic acid and polyethylene imine could undergo Michael addition or Schiff base reaction and codeposit on the carbon fiber surfaces successfully. The gallic acid-polyethylene imine codeposited carbon fibers were used to fabricate epoxy matrix composites. The results of mechanical tests showed that interlaminar shear strength, flexural modulus and strength of the gallic acid-polyethylene imine codeposited carbon fiber composite were increased by 27, 38, and 27% respectively, compared with those of the untreated carbon fiber composite. The conclusion can be drawn that the gallic acid-polyethylene imine codeposition is an effective method for improving interfacial properties of carbon fiber reinforced epoxy resin matrix composites.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed