{"title":"Experimental study of underwater operation scene with target perception framework","authors":"Jue Gao, Wei Ding, Haiping Yang","doi":"10.1186/s13634-023-01086-z","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a target perception framework aimed at enhancing diver safety and facilitating underwater operations by extracting critical information from underwater scenes. The framework employs a layered processing approach, which encompasses water column imaging, constant false alarm rate detection, and local feature analysis. To simulate the diver's underwater environment, we conducted experiments with three distinct fields of view: fixed down-looking, fixed front-looking, and mobile side-looking perspectives. Our experimental findings demonstrate the framework's ability to accurately differentiate between false targets, stationary targets, and moving targets within the underwater scenes, as well as to capture the motion trajectories of dynamic targets. Furthermore, the application of 3D reconstruction techniques to underwater scene data enables the generation of approximate stereoscopic representations of divers and bubble groups.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"21 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01086-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a target perception framework aimed at enhancing diver safety and facilitating underwater operations by extracting critical information from underwater scenes. The framework employs a layered processing approach, which encompasses water column imaging, constant false alarm rate detection, and local feature analysis. To simulate the diver's underwater environment, we conducted experiments with three distinct fields of view: fixed down-looking, fixed front-looking, and mobile side-looking perspectives. Our experimental findings demonstrate the framework's ability to accurately differentiate between false targets, stationary targets, and moving targets within the underwater scenes, as well as to capture the motion trajectories of dynamic targets. Furthermore, the application of 3D reconstruction techniques to underwater scene data enables the generation of approximate stereoscopic representations of divers and bubble groups.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.