Min Shi, Hao Lu, Zhao-Xin Li, Deng-Ming Zhu, Zhao-Qi Wang
{"title":"Accurate Robotic Grasp Detection with Angular Label Smoothing","authors":"Min Shi, Hao Lu, Zhao-Xin Li, Deng-Ming Zhu, Zhao-Qi Wang","doi":"10.1007/s11390-022-1458-5","DOIUrl":null,"url":null,"abstract":"<p>Grasp detection is a visual recognition task where the robot makes use of its sensors to detect graspable objects in its environment. Despite the steady progress in robotic grasping, it is still difficult to achieve both real-time and high accuracy grasping detection. In this paper, we propose a real-time robotic grasp detection method, which can accurately predict potential grasp for parallel-plate robotic grippers using RGB images. Our work employs an end-to-end convolutional neural network which consists of a feature descriptor and a grasp detector. And for the first time, we add an attention mechanism to the grasp detection task, which enables the network to focus on grasp regions rather than background. Specifically, we present an angular label smoothing strategy in our grasp detection method to enhance the fault tolerance of the network. We quantitatively and qualitatively evaluate our grasp detection method from different aspects on the public Cornell dataset and Jacquard dataset. Extensive experiments demonstrate that our grasp detection method achieves superior performance to the state-of-the-art methods. In particular, our grasp detection method ranked first on both the Cornell dataset and the Jacquard dataset, giving rise to the accuracy of 98.9% and 95.6%, respectively at real-time calculation speed.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"35 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-022-1458-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Grasp detection is a visual recognition task where the robot makes use of its sensors to detect graspable objects in its environment. Despite the steady progress in robotic grasping, it is still difficult to achieve both real-time and high accuracy grasping detection. In this paper, we propose a real-time robotic grasp detection method, which can accurately predict potential grasp for parallel-plate robotic grippers using RGB images. Our work employs an end-to-end convolutional neural network which consists of a feature descriptor and a grasp detector. And for the first time, we add an attention mechanism to the grasp detection task, which enables the network to focus on grasp regions rather than background. Specifically, we present an angular label smoothing strategy in our grasp detection method to enhance the fault tolerance of the network. We quantitatively and qualitatively evaluate our grasp detection method from different aspects on the public Cornell dataset and Jacquard dataset. Extensive experiments demonstrate that our grasp detection method achieves superior performance to the state-of-the-art methods. In particular, our grasp detection method ranked first on both the Cornell dataset and the Jacquard dataset, giving rise to the accuracy of 98.9% and 95.6%, respectively at real-time calculation speed.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas