Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview

IF 1.2 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Computer Science and Technology Pub Date : 2024-07-22 DOI:10.1007/s11390-024-3872-3
Lei Guan, Dong-Sheng Li, Ji-Ye Liang, Wen-Jian Wang, Ke-Shi Ge, Xi-Cheng Lu
{"title":"Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview","authors":"Lei Guan, Dong-Sheng Li, Ji-Ye Liang, Wen-Jian Wang, Ke-Shi Ge, Xi-Cheng Lu","doi":"10.1007/s11390-024-3872-3","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has become the cornerstone of artificial intelligence, playing an increasingly important role in human production and lifestyle. However, as the complexity of problem-solving increases, deep learning models become increasingly intricate, resulting in a proliferation of large language models with an astonishing number of parameters. Pipeline model parallelism (PMP) has emerged as one of the mainstream approaches to addressing the significant challenge of training “big models”. This paper presents a comprehensive review of PMP. It covers the basic concepts and main challenges of PMP. It also comprehensively compares synchronous and asynchronous pipeline schedules for PMP approaches, and discusses the main techniques to achieve load balance for both intra-node and inter-node training. Furthermore, the main techniques to optimize computation, storage, and communication are presented, with potential research directions being discussed.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"61 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-3872-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has become the cornerstone of artificial intelligence, playing an increasingly important role in human production and lifestyle. However, as the complexity of problem-solving increases, deep learning models become increasingly intricate, resulting in a proliferation of large language models with an astonishing number of parameters. Pipeline model parallelism (PMP) has emerged as one of the mainstream approaches to addressing the significant challenge of training “big models”. This paper presents a comprehensive review of PMP. It covers the basic concepts and main challenges of PMP. It also comprehensively compares synchronous and asynchronous pipeline schedules for PMP approaches, and discusses the main techniques to achieve load balance for both intra-node and inter-node training. Furthermore, the main techniques to optimize computation, storage, and communication are presented, with potential research directions being discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深度学习训练的管道模型并行性的进步:概述
深度学习已成为人工智能的基石,在人类生产和生活中发挥着越来越重要的作用。然而,随着解决问题的复杂性不断提高,深度学习模型也变得越来越复杂,导致参数数量惊人的大型语言模型激增。管道模型并行化(PMP)已成为应对训练 "大模型 "这一重大挑战的主流方法之一。本文全面回顾了 PMP。它涵盖了 PMP 的基本概念和主要挑战。它还全面比较了 PMP 方法的同步和异步流水线计划,并讨论了在节点内和节点间训练中实现负载平衡的主要技术。此外,还介绍了优化计算、存储和通信的主要技术,并讨论了潜在的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computer Science and Technology
Journal of Computer Science and Technology 工程技术-计算机:软件工程
CiteScore
4.00
自引率
0.00%
发文量
2255
审稿时长
9.8 months
期刊介绍: Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends. Topics covered by Journal of Computer Science and Technology include but are not limited to: -Computer Architecture and Systems -Artificial Intelligence and Pattern Recognition -Computer Networks and Distributed Computing -Computer Graphics and Multimedia -Software Systems -Data Management and Data Mining -Theory and Algorithms -Emerging Areas
期刊最新文献
Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos: A Study of Neural Network Architectures A Survey of Multimodal Controllable Diffusion Models A Survey of LLM Datasets: From Autoregressive Model to AI Chatbot Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview Age-of-Information-Aware Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1