Bi-Ying Yan, Chao Yang, Feng Chen, Kohei Takeda, Changjun Wang
{"title":"FDNet: A Deep Learning Approach with Two Parallel Cross Encoding Pathways for Precipitation Nowcasting","authors":"Bi-Ying Yan, Chao Yang, Feng Chen, Kohei Takeda, Changjun Wang","doi":"10.1007/s11390-021-1103-8","DOIUrl":null,"url":null,"abstract":"<p>With the goal of predicting the future rainfall intensity in a local region over a relatively short period time, precipitation nowcasting has been a long-time scientific challenge with great social and economic impact. The radar echo extrapolation approaches for precipitation nowcasting take radar echo images as input, aiming to generate future radar echo images by learning from the historical images. To effectively handle complex and high non-stationary evolution of radar echoes, we propose to decompose the movement into optical flow field motion and morphologic deformation. Following this idea, we introduce Flow-Deformation Network (FDNet), a neural network that models flow and deformation in two parallel cross pathways. The flow encoder captures the optical flow field motion between consecutive images and the deformation encoder distinguishes the change of shape from the translational motion of radar echoes. We evaluate the proposed network architecture on two real-world radar echo datasets. Our model achieves state-of-the-art prediction results compared with recent approaches. To the best of our knowledge, this is the first network architecture with flow and deformation separation to model the evolution of radar echoes for precipitation nowcasting. We believe that the general idea of this work could not only inspire much more effective approaches but also be applied to other similar spatio-temporal prediction tasks.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"51 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-021-1103-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With the goal of predicting the future rainfall intensity in a local region over a relatively short period time, precipitation nowcasting has been a long-time scientific challenge with great social and economic impact. The radar echo extrapolation approaches for precipitation nowcasting take radar echo images as input, aiming to generate future radar echo images by learning from the historical images. To effectively handle complex and high non-stationary evolution of radar echoes, we propose to decompose the movement into optical flow field motion and morphologic deformation. Following this idea, we introduce Flow-Deformation Network (FDNet), a neural network that models flow and deformation in two parallel cross pathways. The flow encoder captures the optical flow field motion between consecutive images and the deformation encoder distinguishes the change of shape from the translational motion of radar echoes. We evaluate the proposed network architecture on two real-world radar echo datasets. Our model achieves state-of-the-art prediction results compared with recent approaches. To the best of our knowledge, this is the first network architecture with flow and deformation separation to model the evolution of radar echoes for precipitation nowcasting. We believe that the general idea of this work could not only inspire much more effective approaches but also be applied to other similar spatio-temporal prediction tasks.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas