{"title":"Optoelectronic and thermoelectric properties of spinel chalcogenides HgLa2X4 (X=S and Se): A first-principles study","authors":"","doi":"10.1016/j.jre.2023.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated spinel chalcogenides HgLa<sub>2</sub>(S/Se)<sub>4</sub> by using density function theory, and scrutinized the structural, optical, electrical, mechanical and thermoelectric transport characteristics of HgLa<sub>2</sub>(S/Se)<sub>4</sub> spinel chalcogenides. The enthalpy of formation, energy of cohesion, and energy volume optimum plots were used to obtain the stability as well as the perfect ground state of these materials. The ductility of these materials was the best illustrated with the help of Poisson's and Pugh's ratios. The band gap results were obtained using Trans and Blaha modified Becke-Johanson potential (TB-mBJ). Both the materials present semi-conducting nature with direct band gap equal to 1.449 and 0.892 eV respectively for HgLa<sub>2</sub>S<sub>4</sub> and HgLa<sub>2</sub>Se<sub>4</sub>. Calculations were also made for optical characteristics with the values of dielectric function, absorption coefficient, optical conductivity, reflectivity, and refractive indices. According to the findings, both of these materials are suitable for infrared optoelectronic applications. These materials were found to have promising optoelectronic and thermoelectric applications after their optical properties and transport aspects were evaluated. Despite tiny levels of temperature conductivities, substantial amounts of power conductivities, the figure of merit (more than unity), as well as Seebeck coefficients all point to the potential use of both the materials in thermoelectric power generators.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 10","pages":"Pages 1927-1936"},"PeriodicalIF":5.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123003265","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated spinel chalcogenides HgLa2(S/Se)4 by using density function theory, and scrutinized the structural, optical, electrical, mechanical and thermoelectric transport characteristics of HgLa2(S/Se)4 spinel chalcogenides. The enthalpy of formation, energy of cohesion, and energy volume optimum plots were used to obtain the stability as well as the perfect ground state of these materials. The ductility of these materials was the best illustrated with the help of Poisson's and Pugh's ratios. The band gap results were obtained using Trans and Blaha modified Becke-Johanson potential (TB-mBJ). Both the materials present semi-conducting nature with direct band gap equal to 1.449 and 0.892 eV respectively for HgLa2S4 and HgLa2Se4. Calculations were also made for optical characteristics with the values of dielectric function, absorption coefficient, optical conductivity, reflectivity, and refractive indices. According to the findings, both of these materials are suitable for infrared optoelectronic applications. These materials were found to have promising optoelectronic and thermoelectric applications after their optical properties and transport aspects were evaluated. Despite tiny levels of temperature conductivities, substantial amounts of power conductivities, the figure of merit (more than unity), as well as Seebeck coefficients all point to the potential use of both the materials in thermoelectric power generators.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.