首页 > 最新文献

Journal of Rare Earths最新文献

英文 中文
High-performance anisotropic SmCo-based magnet with novel microstructure 具有新型微观结构的高性能各向异性SmCo基磁体
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.08.006

A novel microstructure of magnetically anisotropic SmCo-based magnet with high-performance is reported. The magnet consists of SmCo7-H (TbCu7-hexagonal type), Sm2Co17–H (Th2Ni17-hexagonal type) and SmCo3-R (SmCo3-rhombohedral type) phases. The maximum magnetic energy product of the magnet is 231.69 kJ/m3, and the intrinsic coercivity is 1005.47 kA/m. An outstanding intrinsic coercivity temperature coefficient (β) of −0.125%/K between 298 and 773 K is obtained, which is very close to the β of commercial high-temperature Sm2Co17-based sintered magnets. The initial magnetization curve indicates that the coercivity mechanism is controlled by a domain wall pinning mechanism. The SmCo3-R lamellar phase may be a potential pinning center or self-pinning center. The microstructure of the magnet is different from that of any previous SmCo-based magnets. These findings provide a new idea for preparing high-performance SmCo-based permanent magnets.

报告了一种具有高性能的磁各向异性钐钴基磁体的新型微观结构。该磁体由 SmCo7-H(TbCu7-六方型)、Sm2Co17-H(Th2Ni17-六方型)和 SmCo3-R(SmCo3-斜方型)三相组成。磁体的最大磁能积为 231.69 kJ/m3,本征矫顽力为 1005.47 kA/m。在 298 至 773 K 之间,本征矫顽力温度系数 (β)为 -0.125%/K,非常接近商用高温 Sm2Co17 基烧结磁体的 β 值。初始磁化曲线表明,矫顽力机制受制于畴壁钉扎机制。SmCo3-R 层状相可能是一个潜在的引脚中心或自引脚中心。该磁体的微观结构不同于以往任何一种钐钴基磁体。这些发现为制备高性能钐钴基永磁体提供了新思路。
{"title":"High-performance anisotropic SmCo-based magnet with novel microstructure","authors":"","doi":"10.1016/j.jre.2023.08.006","DOIUrl":"10.1016/j.jre.2023.08.006","url":null,"abstract":"<div><p>A novel microstructure of magnetically anisotropic SmCo-based magnet with high-performance is reported. The magnet consists of SmCo<sub>7</sub>-H (TbCu<sub>7</sub>-hexagonal type), Sm<sub>2</sub>Co<sub>17</sub>–H (Th<sub>2</sub>Ni<sub>17</sub>-hexagonal type) and SmCo<sub>3</sub>-R (SmCo<sub>3</sub><span>-rhombohedral type) phases. The maximum magnetic energy product of the magnet is 231.69 kJ/m</span><sup>3</sup><span>, and the intrinsic coercivity is 1005.47 kA/m. An outstanding intrinsic coercivity temperature coefficient (</span><em>β</em>) of −0.125%/K between 298 and 773 K is obtained, which is very close to the <em>β</em> of commercial high-temperature Sm<sub>2</sub>Co<sub>17</sub>-based sintered magnets. The initial magnetization curve indicates that the coercivity mechanism is controlled by a domain wall pinning mechanism. The SmCo<sub>3</sub>-R lamellar phase may be a potential pinning center or self-pinning center. The microstructure of the magnet is different from that of any previous SmCo-based magnets. These findings provide a new idea for preparing high-performance SmCo-based permanent magnets.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1539-1545"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46412760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure and luminescence dynamics of highly pure LiM(PO3)3:Eu3+ (M = Sr, Ca) red phosphors for white light emitting diodes 白光二极管用高纯LiM(PO3)3:Eu3+(M=Sr,Ca)红色荧光粉的晶体结构和发光动力学
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.08.016

Highly pure red phosphors LiM(PO3)3:Eu3+ (M = Sr, Ca) doped with Eu3+ (1 mol%) were synthesized via solution combustion method and their crystal structure and luminescence dynamics were studied to explore its suitability in white light emitting diodes. The Rietveld refinement analysis of the powder X-ray diffraction patterns reveals that the phosphors belong to the pure triclinic phase of LiSr(PO3)3 and LiCa(PO3) with space group P-1¯ (2). The scanning electron microscopy images showed the agglomerated morphology. The photoluminescence emission spectra under 393 nm show an orange band at 594 nm and a red band at 613 nm ascribed to 5D07F1, 5D07F2 transitions of Eu3+ ion in both the phosphors. Moreover, the spectroscopic properties such as luminescence behaviour, and Stark splitting were used to examine the symmetry of Eu3+ ions in LiM(PO3)3:Eu3+ (M = Sr, Ca) phosphors in terms of distortion induced upon doping. The Stark splitting shows that the actual site symmetry for Eu3+ ion was estimated to be D2 type for both phosphors. The photometric properties of LiCa(PO3)3:Eu3+ such as Commission International de l’Eclairage coordinates (x = 0.64, y = 0.36) near to the standard one (red), high color purity (95%) and higher brightness reveal that the phosphor has the capability of acting as a red component in n-UV white light emitting diodes.

通过溶液燃烧法合成了掺杂 Eu3+ (1 mol%) 的高纯红色荧光粉 LiM(PO3)3:Eu3+(M = Sr, Ca),并对其晶体结构和发光动力学进行了研究,以探索其在白光发光二极管中的适用性。对粉末 X 射线衍射图样的里特维尔德细化分析表明,荧光粉属于空间群 P-1¯ (2) 的纯三菱相 LiSr(PO3)3 和 LiCa(PO3)。扫描电子显微镜图像显示了团聚形态。在 393 纳米波长下的光致发光发射光谱显示,在 594 纳米波长处有一条橙色带,在 613 纳米波长处有一条红色带,这是两种荧光粉中 Eu3+ 离子的 5D0 → 7F1、5D0 → 7F2 转变所致。此外,我们还利用发光行为和斯塔克分裂等光谱特性,从掺杂后引起的畸变角度来研究 LiM(PO3)3:Eu3+(M = Sr、Ca)荧光粉中 Eu3+ 离子的对称性。斯塔克分裂显示,两种荧光粉中 Eu3+ 离子的实际位点对称性估计为 D2 型。LiCa(PO3)3:Eu3+ 的光度特性(如国际照明委员会坐标(x = 0.64,y = 0.36)接近标准坐标(红色))、高色纯度(95%)和高亮度表明,该荧光粉可用作正紫外白光发光二极管中的红色成分。
{"title":"Crystal structure and luminescence dynamics of highly pure LiM(PO3)3:Eu3+ (M = Sr, Ca) red phosphors for white light emitting diodes","authors":"","doi":"10.1016/j.jre.2023.08.016","DOIUrl":"10.1016/j.jre.2023.08.016","url":null,"abstract":"<div><p>Highly pure red phosphors LiM(PO<sub>3</sub>)<sub>3</sub>:Eu<sup>3+</sup> (M = Sr, Ca) doped with Eu<sup>3+</sup> (1 mol%) were synthesized via solution combustion method and their crystal structure and luminescence dynamics were studied to explore its suitability in white light emitting diodes. The Rietveld refinement analysis of the powder X-ray diffraction patterns reveals that the phosphors belong to the pure triclinic phase of LiSr(PO<sub>3</sub>)<sub>3</sub> and LiCa(PO<sub>3</sub>) with space group <em>P</em>-<span><math><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></math></span> (2). The scanning electron microscopy images showed the agglomerated morphology. The photoluminescence emission spectra under 393 nm show an orange band at 594 nm and a red band at 613 nm ascribed to <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>1</sub>, <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> transitions of Eu<sup>3+</sup> ion in both the phosphors. Moreover, the spectroscopic properties such as luminescence behaviour, and Stark splitting were used to examine the symmetry of Eu<sup>3+</sup> ions in LiM(PO<sub>3</sub>)<sub>3</sub>:Eu<sup>3+</sup> (M = Sr, Ca) phosphors in terms of distortion induced upon doping. The Stark splitting shows that the actual site symmetry for Eu<sup>3+</sup> ion was estimated to be D<sub>2</sub> type for both phosphors<strong>.</strong> The photometric properties of LiCa(PO<sub>3</sub>)<sub>3</sub>:Eu<sup>3+</sup> such as Commission International de l’Eclairage coordinates (<em>x</em> = 0.64, <em>y</em> = 0.36) near to the standard one (red), high color purity (95%) and higher brightness reveal that the phosphor has the capability of acting as a red component in n-UV white light emitting diodes.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1470-1478"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41766914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing N-hydroxy-9-octadecenamide as a collector in flotation separation of bastnaesite and fluorite 利用n -羟基-9-十八胺作为捕收剂在氟碳石和萤石浮选分离中的应用
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.07.001

Bastnaesite ((Ce,La,Pr,Nd)CO3F) is a significant light rare earth mineral found in nature, known for its fine-grained properties. Flotation is commonly employed for the recovery of fine-grained bastnaesite particles. Collectors serve as an essential flotation reagent that enhance the surface hydrophobicity of target minerals. A novel collector, N-hydroxy-9-octadecenamide (N-OH-9-ODA), was synthesised in this study. N-OH-9-ODA exhibits superior selectivity compared to the traditional collector oleic acid in the flotation separation of bastnaesite and fluorite. The experimental and computational results indicate that N-OH-9-ODA exhibits superior selectivity due to its higher adsorption affinity for bastnaesite surface compared to fluorite surface. The zeta potential and the binding energies of the Ce 3d peaks in the X-ray photoelectron spectrum (XPS) of bastnaesite surface exhibit significant shifts. Conversely, fluorite surface demonstrates minimal alterations in its zeta potential and the binding energies of the Ca 2p peaks in its XPS after its interaction with N-OH-9-ODA.

巴斯奈斯特((Ce,La,Pr,Nd)CO3F)是自然界中一种重要的轻稀土矿物,因其细粒特性而闻名。通常采用浮选法来回收细粒度的巴斯奈斯特颗粒。捕收剂是一种重要的浮选试剂,可增强目标矿物的表面疏水性。本研究合成了一种新型捕收剂--N-羟基-9-十八烯酰胺(N-OH-9-ODA)。与传统捕收剂油酸相比,N-OH-9-ODA 在浮选分离韧皮石和萤石时表现出更高的选择性。实验和计算结果表明,与萤石表面相比,N-OH-9-ODA 对韧皮石表面具有更高的吸附亲和力,因而具有更优越的选择性。韧皮石表面的 Zeta 电位和 X 射线光电子能谱 (XPS) 中 Ce 3d 峰的结合能发生了显著变化。相反,萤石表面在与 N-OH-9-ODA 作用后,其 zeta 电位和 XPS 中 Ca 2p 峰的结合能变化极小。
{"title":"Utilizing N-hydroxy-9-octadecenamide as a collector in flotation separation of bastnaesite and fluorite","authors":"","doi":"10.1016/j.jre.2023.07.001","DOIUrl":"10.1016/j.jre.2023.07.001","url":null,"abstract":"<div><p>Bastnaesite ((Ce,La,Pr,Nd)CO<sub>3</sub>F) is a significant light rare earth mineral found in nature, known for its fine-grained properties. Flotation is commonly employed for the recovery of fine-grained bastnaesite particles. Collectors serve as an essential flotation reagent that enhance the surface hydrophobicity of target minerals. A novel collector, <em>N</em>-hydroxy-9-octadecenamide (N-OH-9-ODA), was synthesised in this study. N-OH-9-ODA exhibits superior selectivity compared to the traditional collector oleic acid in the flotation separation of bastnaesite and fluorite. The experimental and computational results indicate that N-OH-9-ODA exhibits superior selectivity due to its higher adsorption affinity for bastnaesite surface compared to fluorite surface. The zeta potential and the binding energies of the Ce 3d peaks in the X-ray photoelectron spectrum (XPS) of bastnaesite surface exhibit significant shifts. Conversely, fluorite surface demonstrates minimal alterations in its zeta potential and the binding energies of the Ca 2p peaks in its XPS after its interaction with N-OH-9-ODA.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1620-1628"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42725378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, phase transformation and applications of CeCO3OH: A review CeCO3OH的合成、相变及应用综述
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.09.003

CeCO3OH has a unique crystal structure and excellent optical, electronic and catalytic properties, which has been widely investigated for many applications. Interestingly, ceria obtained from CeCO3OH has a morphology that is similar to that of the precursor, and the CeO2-based products obtained from CeCO3OH exhibit outstanding properties, such as catalytic performances, owing to their designed morphology and oxygen vacancies (OVs). To introduce CeCO3OH into a wider range of potential researchers, we first systematically review the physico-chemical properties, synthesis, reaction and morphology tuning mechanism of CeCO3OH, and summarize the conversion behavior from CeCO3OH to ceria. Then, we thoroughly survey the applications of CeCO3OH and its conversion products. Suggestions for further investigations of CeCO3OH are also made in this review. It is hoped that the exhaustive compilation of the valuable properties and considerable potential investigations of CeCO3OH will promote further applications of CeCO3OH and CeO2-based functional materials.

CeCO3OH 具有独特的晶体结构和优异的光学、电子和催化性能,已在许多应用领域得到广泛研究。有趣的是,从 CeCO3OH 中获得的铈具有与前驱体相似的形貌,而从 CeCO3OH 中获得的基于 CeO2 的产品由于其设计的形貌和氧空位(OVs)而表现出卓越的性能,如催化性能。为了将 CeCO3OH 介绍给更多潜在的研究人员,我们首先系统地回顾了 CeCO3OH 的物理化学性质、合成、反应和形态调整机制,并总结了从 CeCO3OH 到铈的转化行为。然后,我们深入研究了 CeCO3OH 及其转化产物的应用。本综述还对 CeCO3OH 的进一步研究提出了建议。希望通过对 CeCO3OH 的宝贵特性和巨大潜力研究的详尽汇编,能够促进 CeCO3OH 和基于 CeO2 的功能材料的进一步应用。
{"title":"Synthesis, phase transformation and applications of CeCO3OH: A review","authors":"","doi":"10.1016/j.jre.2023.09.003","DOIUrl":"10.1016/j.jre.2023.09.003","url":null,"abstract":"<div><p>CeCO<sub>3</sub>OH has a unique crystal structure and excellent optical, electronic and catalytic properties, which has been widely investigated for many applications. Interestingly, ceria obtained from CeCO<sub>3</sub>OH has a morphology that is similar to that of the precursor, and the CeO<sub>2</sub><strong>-</strong>based products obtained from CeCO<sub>3</sub>OH exhibit outstanding properties, such as catalytic performances, owing to their designed morphology and oxygen vacancies (OVs). To introduce CeCO<sub>3</sub>OH into a wider range of potential researchers, we first systematically review the physico-chemical properties, synthesis, reaction and morphology tuning mechanism of CeCO<sub>3</sub>OH, and summarize the conversion behavior from CeCO<sub>3</sub>OH to ceria. Then, we thoroughly survey the applications of CeCO<sub>3</sub>OH and its conversion products. Suggestions for further investigations of CeCO<sub>3</sub>OH are also made in this review. It is hoped that the exhaustive compilation of the valuable properties and considerable potential investigations of CeCO<sub>3</sub>OH will promote further applications of CeCO<sub>3</sub>OH and CeO<sub>2</sub>-based functional materials.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1403-1420"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41277576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual-mode optical thermometer based on dual-excitation Bi3+,Sm3+ co-doped Y4GeO8 phosphors 基于双激发 Bi3+、Sm3+ 共掺杂 Y4GeO8 荧光粉的双模光学温度计
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.10.010

Dual-excitation and dual-emission Y4GeO8:Bi3+,Sm3+ phosphors were manufactured by traditional solid-phase sintering technique. The X-ray diffraction, morphology, photoluminescence, energy transfer process and temperature sensing properties of Y4GeO8:Bi3+,Sm3+ samples were comprehensively evaluated. The Y4GeO8:Bi3+,Sm3+ phosphors exhibit characteristic emissions of Bi3+ (3P11S0) and Sm3+ (4G5/26H) under both 290 and 347 nm excitations. In fluorescence intensity ratio and Commission International de L'Eclairage coordinates modes, Y4GeO8:Bi3+,Sm3+ samples present excellent temperature measurement performance. The maximum relative sensitivity (Sr-max) values of the former are 1.55%/K (460 K, 290 nm excitation) and 0.82%/K (506 K, 347 nm excitation). The Sr-max(x) values of the latter are 0.21%/K (437 K, 290 nm excitation) and 0.15%/K (513 K, 347 nm excitation). These results illustrate that Y4GeO8:Bi3+,Sm3+ phosphors can be used as a candidate material for a dual-mode optical thermometer under dual-excitation.

采用传统固相烧结技术制备了双激发和双发射 Y4GeO8:Bi3+,Sm3+ 荧光粉。对 Y4GeO8:Bi3+,Sm3+ 样品的 X 射线衍射、形貌、光致发光、能量传递过程和温度传感性能进行了综合评价。在 290 nm 和 347 nm 激发下,Y4GeO8:Bi3+,Sm3+ 磷光体呈现出 Bi3+(3P1→1S0)和 Sm3+(4G5/2→6H)的特征发射。在荧光强度比和国际照明委员会坐标模式下,Y4GeO8:Bi3+,Sm3+ 样品具有出色的温度测量性能。前者的最大相对灵敏度(Sr-max)值为 1.55%/K(460 K,290 nm 激发)和 0.82%/K(506 K,347 nm 激发)。后者的 Sr-max(x)值分别为 0.21%/K(437 K,290 nm 激发)和 0.15%/K(513 K,347 nm 激发)。这些结果表明,Y4GeO8:Bi3+,Sm3+ 荧光粉可用作双激发下双模光学温度计的候选材料。
{"title":"A dual-mode optical thermometer based on dual-excitation Bi3+,Sm3+ co-doped Y4GeO8 phosphors","authors":"","doi":"10.1016/j.jre.2023.10.010","DOIUrl":"10.1016/j.jre.2023.10.010","url":null,"abstract":"<div><p>Dual-excitation and dual-emission Y<sub>4</sub>GeO<sub>8</sub>:Bi<sup>3+</sup>,Sm<sup>3+</sup> phosphors were manufactured by traditional solid-phase sintering technique. The X-ray diffraction, morphology, photoluminescence, energy transfer process and temperature sensing properties of Y<sub>4</sub>GeO<sub>8</sub>:Bi<sup>3+</sup>,Sm<sup>3+</sup> samples were comprehensively evaluated. The Y<sub>4</sub>GeO<sub>8</sub>:Bi<sup>3+</sup>,Sm<sup>3+</sup> phosphors exhibit characteristic emissions of Bi<sup>3+</sup> (<sup>3</sup>P<sub>1</sub>→<sup>1</sup>S<sub>0</sub>) and Sm<sup>3+</sup> (<sup>4</sup>G<sub>5/2</sub>→<sup>6</sup>H) under both 290 and 347 nm excitations. In fluorescence intensity ratio and Commission International de L'Eclairage coordinates modes, Y<sub>4</sub>GeO<sub>8</sub>:Bi<sup>3+</sup>,Sm<sup>3+</sup> samples present excellent temperature measurement performance. The maximum relative sensitivity (<em>S</em><sub>r-max</sub>) values of the former are 1.55%/K (460 K, 290 nm excitation) and 0.82%/K (506 K, 347 nm excitation). The <em>S</em><sub>r-max</sub>(<em>x</em>) values of the latter are 0.21%/K (437 K, 290 nm excitation) and 0.15%/K (513 K, 347 nm excitation). These results illustrate that Y<sub>4</sub>GeO<sub>8</sub>:Bi<sup>3+</sup>,Sm<sup>3+</sup> phosphors can be used as a candidate material for a dual-mode optical thermometer under dual-excitation.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1437-1446"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135849409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare earth based MgPm2X4 (X = S, Se) spinel chalcogenides for spintronic and thermoelectric applications 用于自旋电子和热电应用的稀土基 MgPm2X4(X = S、Se)尖晶石铬化物
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.10.001

In current report, the structural, magnetic, and thermoelectric properties of RE doped MgPm2X4 (X = S, Se) spinels were investigated. The energy difference in ferromagnetic and antiferromagnetic states reveals the stability of MgPm2(S/Se)4 in the ferromagnetic states. The computation of enthalpy of formation also ascertains thermodynamic stability of crystal structure. Spin-dependent band structure and density of states analysis reveal ferromagnetic semiconducting character showing different electronic behavior in both spin channels. The room temperature ferromagnetism, spin polarization and Curie temperature are estimated from exchange energies analysis. In addition, exchange constants (N0α and N0β), exchange energy Δx(pd), crystal field energy, and double exchange mechanism were studied to explore the magnetic response. Likewise, the electrical conductivity, thermal conductivity, Seebeck co-efficient, and power factor show effect on electrons spin and their potential for thermoelectric devices.

本报告研究了掺杂 RE 的 MgPm2X4(X = S、Se)尖晶石的结构、磁性和热电性能。铁磁态和反铁磁态的能量差揭示了 MgPm2(S/Se)4 在铁磁态的稳定性。对形成焓的计算也确定了晶体结构的热力学稳定性。与自旋相关的带状结构和态密度分析表明,铁磁性半导体在两个自旋通道中显示出不同的电子行为。室温铁磁性、自旋极化和居里温度是通过交换能分析估算出来的。此外,还研究了交换常数(N0α 和 N0β)、交换能 Δx(pd)、晶体场能和双交换机制,以探索磁响应。同样,电导率、热导率、塞贝克系数和功率因数也显示了对电子自旋的影响及其在热电设备中的潜力。
{"title":"Rare earth based MgPm2X4 (X = S, Se) spinel chalcogenides for spintronic and thermoelectric applications","authors":"","doi":"10.1016/j.jre.2023.10.001","DOIUrl":"10.1016/j.jre.2023.10.001","url":null,"abstract":"<div><p>In current report, the structural, magnetic, and thermoelectric properties of RE doped MgPm<sub>2</sub>X<sub>4</sub> (X = S, Se) spinels were investigated. The energy difference in ferromagnetic and antiferromagnetic states reveals the stability of MgPm<sub>2</sub>(S/Se)<sub>4</sub> in the ferromagnetic states. The computation of enthalpy of formation also ascertains thermodynamic stability of crystal structure. Spin-dependent band structure and density of states analysis reveal ferromagnetic semiconducting character showing different electronic behavior in both spin channels. The room temperature ferromagnetism, spin polarization and Curie temperature are estimated from exchange energies analysis. In addition, exchange constants (<em>N</em><sub>0</sub><em>α</em> and <em>N</em><sub>0</sub><em>β</em>), exchange energy Δ<sub><em>x</em></sub>(pd), crystal field energy, and double exchange mechanism were studied to explore the magnetic response. Likewise, the electrical conductivity, thermal conductivity, Seebeck co-efficient, and power factor show effect on electrons spin and their potential for thermoelectric devices.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1577-1585"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136093926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal stability improvement and microstructure optimization of high cobalt content Nd-Fe-B magnets via terbium grain boundary diffusion 通过铽晶界扩散改善高钴含量钕铁硼磁体的热稳定性并优化其微观结构
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.10.023

The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets. However, the accumulation of Co element at the grain boundaries (GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thin-layer GBs to become rare. In this paper, the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets. Three original sintered Nd28.5Dy3-CoxFebalM0.6B1 (x = 0, 6 wt%, 12 wt%; M = Cu, Al, Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion (GBD). After GBD, high-Co magnets exhibit more continuously distributed thin-layer GBs, and their thermal stability is significantly improved. In high-Co magnets (x = 6 wt%), the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to 0.508%/K in the temperature range of 293–413 K, that of remanence decreases from 0.099%/K to 0.091%/K, and the coercivity increases from 18.44 to 25.04 kOe. Transmission electron microscopy (TEM) characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD. EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase. The concentration of Tb at the edge of the main phase is much higher than that in the 1:2 phase and amorphous phase, which is beneficial to the improvement of the microstructure. The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets. The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.

在 2:14:1 相中用 Co 取代 Fe 是提高钕铁硼磁体居里温度和热稳定性的有效方法。然而,Co 元素在晶界(GBs)的积累会使 GBs 从非磁性变为铁磁性,并导致薄层 GBs 变得稀少。本文选择了扩散铽元素的方法来改善高钴磁体的微观结构和温度稳定性。通过晶界扩散(GBD)将铽元素扩散到三种不同钴含量的原始烧结 Nd28.5Dy3-CoxFebalM0.6B1(x = 0、6 wt%、12 wt%;M = Cu、Al、Zr)磁体中。经过 GBD 后,高钴磁体呈现出更多连续分布的薄层 GB,其热稳定性也显著提高。在高钴磁体(x = 6 wt%)中,矫顽力温度系数的绝对值在 293-413 K 温度范围内从 0.603%/K 降至 0.508%/K,剩磁系数从 0.099%/K 降至 0.091%/K,矫顽力从 18.44 kOe 增至 25.04 kOe。透射电子显微镜(TEM)表征显示,GBD 前后的高钴磁体中都存在 1:2 相和无定形相。EDS 元素分析表明,与 1:2 相和无定形相相比,铽元素更有可能优先取代 2:14:1 主相中的稀土元素。主相边缘的铽元素浓度远高于 1:2 相和无定形相,这有利于微观结构的改善。2:14:1 相边缘 Tb 元素的优先置换和分布更连续的薄层 GB 协同改善了高钴磁体的热稳定性。研究表明,GBD 是改善高钴磁体微观结构和热稳定性的有效方法。
{"title":"Thermal stability improvement and microstructure optimization of high cobalt content Nd-Fe-B magnets via terbium grain boundary diffusion","authors":"","doi":"10.1016/j.jre.2023.10.023","DOIUrl":"10.1016/j.jre.2023.10.023","url":null,"abstract":"<div><p>The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets. However, the accumulation of Co element at the grain boundaries (GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thin-layer GBs to become rare. In this paper, the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets. Three original sintered Nd<sub>28.5</sub>Dy<sub>3</sub>-Co<sub><em>x</em></sub>Fe<sub>bal</sub>M<sub>0.6</sub>B<sub>1</sub> (<em>x</em> = 0, 6 wt%, 12 wt%; M = Cu, Al, Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion (GBD). After GBD, high-Co magnets exhibit more continuously distributed thin-layer GBs, and their thermal stability is significantly improved. In high-Co magnets (<em>x</em> = 6 wt%), the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to 0.508%/K in the temperature range of 293–413 K, that of remanence decreases from 0.099%/K to 0.091%/K, and the coercivity increases from 18.44 to 25.04 kOe. Transmission electron microscopy (TEM) characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD. EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase. The concentration of Tb at the edge of the main phase is much higher than that in the 1:2 phase and amorphous phase, which is beneficial to the improvement of the microstructure. The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets. The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1531-1538"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136127992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization of RE2(OH)2CO3SO4·nH2O as a new family of layered hydroxides (RE = Gd−Lu lanthanides and Y), derivation of RE2O2SO4, photoluminescence and optical thermometry RE2(OH)2CO3SO4·nH2O新层状氢氧化物(RE = Gd−Lu镧系元素和Y)的结晶、RE2O2SO4的衍生、光致发光和光学测温
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.07.008

Layered rare-earth hydroxides (LREHs) draw wide research interest because of their peculiar crystal structure, rich interlayer chemistry and abundant functionality of the RE element, but are limited to the two categories of RE2(OH)5nH2O (A: typical of Cl or NO3) and RE2(OH)4SO4·nH2O. On the other hand, rare-earth oxysulfates (RE2O2SO4) have attracted attention due to their properties of large-capacity oxygen storage, low-temperature magnetism and luminescence, but their preparation procedure mostly involves toxic SOx gases and/or complicated procedures. In this work, RE2(OH)2CO3SO4·nH2O as a new family of LREHs (RE = Gd‒Lu lanthanides and Y) were produced via hydrothermal reaction, from which phase-pure RE2O2SO4 was derived via subsequent annealing at 800 °C in air without the involvement of SOx. The compounds were thoroughly characterized to reveal the intrinsic influence of lanthanide contraction (RE3+ radius) on crystal structure, thermal behavior (dehydroxylation/decarbonation/desulfurization), vibrational property and crystallite morphology. Through analyzing the photoluminescence of Eu3+ and Sm3+ in the Gd2O2SO4 typical host it is found that the 617 nm (Eu3+, λex = 275 nm) and 608 nm (Sm3+, λex = 407 nm) main emissions can retain as high as ∼79.6% and 85.5% of their room-temperature intensities at 423 K, with activation energies of ∼0.19 and 0.21 eV for thermal quenching, respectively. Application also indicates that both the phosphors have the potential for optical temperature sensing via the fluorescence intensity ratio (FIR) technology, whose maximum relative sensitivity reaches ∼2.70%/K for Eu3+ and 1.73%/K for Sm3+ at 298 K.

层状稀土氢氧化物(LREHs)因其奇特的晶体结构、丰富的层间化学性质和丰富的稀土元素功能而引起了广泛的研究兴趣,但仅限于 RE2(OH)5A-nH2O(A:典型的 Cl- 或 NO3-)和 RE2(OH)4SO4-nH2O 两类。另一方面,稀土氧硫酸盐(RE2O2SO4)因其大容量储氧、低温磁性和发光等特性而备受关注,但其制备过程大多涉及有毒的 SOx 气体和/或复杂的程序。在这项研究中,通过水热反应制备了 RE2(OH)2CO3SO4-nH2O(RE = Gd-Lu 镧系元素和 Y)这一新的 LREHs 家族,随后在不涉及 SOx 的情况下,在 800 °C 的空气中退火,得到了相纯的 RE2O2SO4。对这些化合物进行了全面表征,以揭示镧系元素收缩(RE3+ 半径)对晶体结构、热行为(脱羟基/脱碳/脱硫)、振动特性和晶粒形态的内在影响。通过分析 Gd2O2SO4 典型宿主中 Eu3+ 和 Sm3+ 的光致发光发现,在 423 K 时,617 nm(Eu3+,λex = 275 nm)和 608 nm(Sm3+,λex = 407 nm)的主要发射可分别保持其室温强度的 ∼79.6% 和 85.5%,热淬灭的活化能分别为 ∼0.19 和 0.21 eV。应用还表明,这两种荧光粉都具有通过荧光强度比(FIR)技术进行光学温度传感的潜力,在 298 K 时,Eu3+ 和 Sm3+ 的最大相对灵敏度分别达到 2.70%/K 和 1.73%/K。
{"title":"Crystallization of RE2(OH)2CO3SO4·nH2O as a new family of layered hydroxides (RE = Gd−Lu lanthanides and Y), derivation of RE2O2SO4, photoluminescence and optical thermometry","authors":"","doi":"10.1016/j.jre.2023.07.008","DOIUrl":"10.1016/j.jre.2023.07.008","url":null,"abstract":"<div><p>Layered rare-earth hydroxides (LREHs) draw wide research interest because of their peculiar crystal structure, rich interlayer chemistry and abundant functionality of the RE element, but are limited to the two categories of RE<sub>2</sub>(OH)<sub>5</sub>A·<em>n</em>H<sub>2</sub>O (A: typical of Cl<sup>−</sup> or NO<sub>3</sub><sup>−</sup>) and RE<sub>2</sub>(OH)<sub>4</sub>SO<sub>4</sub>·<em>n</em>H<sub>2</sub>O. On the other hand, rare-earth oxysulfates (RE<sub>2</sub>O<sub>2</sub>SO<sub>4</sub>) have attracted attention due to their properties of large-capacity oxygen storage, low-temperature magnetism and luminescence, but their preparation procedure mostly involves toxic SO<sub><em>x</em></sub> gases and/or complicated procedures. In this work, RE<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>SO<sub>4</sub>·<em>n</em>H<sub>2</sub>O as a new family of LREHs (RE = Gd‒Lu lanthanides and Y) were produced via hydrothermal reaction, from which phase-pure RE<sub>2</sub>O<sub>2</sub>SO<sub>4</sub> was derived via subsequent annealing at 800 °C in air without the involvement of SO<sub><em>x</em></sub>. The compounds were thoroughly characterized to reveal the intrinsic influence of lanthanide contraction (RE<sup>3+</sup> radius) on crystal structure, thermal behavior (dehydroxylation/decarbonation/desulfurization), vibrational property and crystallite morphology. Through analyzing the photoluminescence of Eu<sup>3+</sup> and Sm<sup>3+</sup> in the Gd<sub>2</sub>O<sub>2</sub>SO<sub>4</sub> typical host it is found that the 617 nm (Eu<sup>3+</sup>, <em>λ</em><sub>ex</sub> = 275 nm) and 608 nm (Sm<sup>3+</sup>, <em>λ</em><sub>ex</sub> = 407 nm) main emissions can retain as high as ∼79.6% and 85.5% of their room-temperature intensities at 423 K, with activation energies of ∼0.19 and 0.21 eV for thermal quenching, respectively. Application also indicates that both the phosphors have the potential for optical temperature sensing via the fluorescence intensity ratio (FIR) technology, whose maximum relative sensitivity reaches ∼2.70%/K for Eu<sup>3+</sup> and 1.73%/K for Sm<sup>3+</sup> at 298 K.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1496-1506"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45334846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Ce/BEA as a passive NOx adsorber: 2. Hydrothermal aging deactivation mechanism Ce/BEA作为NO被动吸附剂的研究:2。水热老化失活机理
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.05.009

Ce/BEA has the potential to be applied as a novel passive NOx absorber (PNA) in the after-treatment of vehicles due to its considerable NOx storage capacity. However, as a vehicle exhaust after-treatment material, it must withstand the test of long-term hydrothermal aging. This work examined the deactivation mechanism of Ce/BEA during hydrothermal aging. 3.0 wt% Ce/BEA was prepared using the ion-exchange method, and then subjected to hydrothermal treatment at 650 °C with 10% H2O for 112 h to obtain samples with different aging extent. For comparison, the H-BEA support was aged under the same conditions. Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), NH3 temperature programmed reduction (NH3-TPD), 27Al MAS nuclear magnetic resonance (27Al MAS NMR), H2 temperature programmed reduction (H2-TPR), and high resolution-transmission electron microscopy (HR-TEM) were performed to characterize the changes in PNA performance, structure, Ce species, and acidity. The HR-TEM and H2-TPR results show that CeOx particles appear after hydrothermal aging, which results from the detachment and aggregation of active Ce species. Based on the 27Al MAS NMR results, we conclude that BEA zeolite dealumination leads to the loss of acidic sites and the transformation of active Ce species on the acidic sites into the less active CeOx. This is the primary reason for the hydrothermal aging deactivation of Ce/BEA.

Ce/BEA 具有相当大的氮氧化物储存能力,因此有潜力作为新型被动氮氧化物吸收剂(PNA)应用于汽车尾气后处理。然而,作为汽车尾气后处理材料,它必须经受长期水热老化的考验。本研究考察了 Ce/BEA 在水热老化过程中的失活机理。采用离子交换法制备了 3.0 wt% 的 Ce/BEA,然后在 650 ℃、10% H2O 的条件下进行 1-12 h 的水热处理,得到了不同老化程度的样品。为了进行比较,H-BEA 支撑物也在相同条件下进行了老化。实验采用了布鲁纳-艾美特-泰勒(BET)法、X 射线衍射(XRD)、NH3 温度编程还原(NH3-TPD)、27Al MAS 核磁共振(27Al MAS NMR)、H2 温度编程还原(H2-TPR)和高分辨率透射电子显微镜(HR-TEM)来表征 PNA 性能、结构、Ce 种类和酸度的变化。HR-TEM 和 H2-TPR 结果表明,水热老化后出现了 CeOx 颗粒,这是活性 Ce 物种脱离和聚集的结果。根据 27Al MAS NMR 结果,我们得出结论:BEA 沸石脱铝导致酸性位点丧失,酸性位点上的活性 Ce 物种转变为活性较低的 CeOx。这是 Ce/BEA 水热老化失活的主要原因。
{"title":"Investigation of Ce/BEA as a passive NOx adsorber: 2. Hydrothermal aging deactivation mechanism","authors":"","doi":"10.1016/j.jre.2023.05.009","DOIUrl":"10.1016/j.jre.2023.05.009","url":null,"abstract":"<div><p>Ce/BEA has the potential to be applied as a novel passive NO<sub><em>x</em></sub> absorber (PNA) in the after-treatment of vehicles due to its considerable NO<sub><em>x</em></sub> storage capacity. However, as a vehicle exhaust after-treatment material, it must withstand the test of long-term hydrothermal aging. This work examined the deactivation mechanism of Ce/BEA during hydrothermal aging. 3.0 wt% Ce/BEA was prepared using the ion-exchange method, and then subjected to hydrothermal treatment at 650 °C with 10% H<sub>2</sub>O for 1<strong>–</strong>12 h to obtain samples with different aging extent. For comparison, the H-BEA support was aged under the same conditions. Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), NH<sub>3</sub> temperature programmed reduction (NH<sub>3</sub>-TPD), <sup>27</sup>Al MAS nuclear magnetic resonance (<sup>27</sup>Al MAS NMR), H<sub>2</sub> temperature programmed reduction (H<sub>2</sub>-TPR), and high resolution-transmission electron microscopy (HR-TEM) were performed to characterize the changes in PNA performance, structure, Ce species, and acidity. The HR-TEM and H<sub>2</sub>-TPR results show that CeO<sub><em>x</em></sub> particles appear after hydrothermal aging, which results from the detachment and aggregation of active Ce species. Based on the <sup>27</sup>Al MAS NMR results, we conclude that BEA zeolite dealumination leads to the loss of acidic sites and the transformation of active Ce species on the acidic sites into the less active CeO<sub><em>x</em></sub>. This is the primary reason for the hydrothermal aging deactivation of Ce/BEA.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1524-1530"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44413489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a novel Eu3+-doped tantalate red-emitting phosphor for w-LEDs application 一种用于w-LED应用的新型Eu3+掺杂钽酸盐红色荧光粉的研制
IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.jre.2023.07.014

Two novel phosphors LiBa4(1‒x)Eu4xTa3O12 (H-LBTO:xEu3+) and Li0.25Ba1‒xEuxTa0.75O3 (C-LBTO:xEu3+) were prepared successfully by a molten salt method. The transformation between these two structures was realized by changing the sintering temperature or changing the Eu3+ ions concentration, which was also demonstrated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectra (DRS), and photoluminescence excitation (PLE) analyses. Both the sintering temperature and the Eu3+ ions doping concentration have significant impact on the formation of the crystal phase. All these phosphors sintered at 1023 K exhibit two major luminescence lines at 594 and 614 nm under near-UV light of 395 nm excitation, corresponding to Eu3+ ions typical transitions of 5D07F1 and 5D07F2. The optimum concentration of Eu3+ ions is 9 mol% for C-LBTO:xEu3+ samples and the quenching interaction type is the nearest-neighbor ion interaction. The thermal stability of the C-LBTO:0.09Eu3+ sample was investigated in detail and the device application further suggests that C-LBTO:0.09Eu3+ can be used as a red phosphor for near-UV excited w-LEDs in lighting.

通过熔盐法成功制备了两种新型荧光粉 LiBa4(1-x)Eu4xTa3O12 (H-LBTO:xEu3+) 和 Li0.25Ba1-xEuxTa0.75O3 (C-LBTO:xEu3+)。X射线衍射(XRD)、扫描电子显微镜(SEM)、漫反射光谱(DRS)和光致发光激发(PLE)分析也证明了这一点。烧结温度和 Eu3+ 离子掺杂浓度对晶相的形成都有显著影响。所有这些在 1023 K 下烧结的荧光粉在 395 nm 的近紫外光激发下都会在 594 nm 和 614 nm 处出现两条主要的发光线,分别对应于 Eu3+ 离子的典型跃迁 5D0→7F1 和 5D0→7F2。C-LBTO:xEu3+ 样品中 Eu3+ 离子的最佳浓度为 9 摩尔%,淬灭作用类型为近邻离子作用。对 C-LBTO:0.09Eu3+ 样品的热稳定性进行了详细研究,器件应用进一步表明,C-LBTO:0.09Eu3+ 可用作近紫外激发 w-LED 的红色荧光粉。
{"title":"Development of a novel Eu3+-doped tantalate red-emitting phosphor for w-LEDs application","authors":"","doi":"10.1016/j.jre.2023.07.014","DOIUrl":"10.1016/j.jre.2023.07.014","url":null,"abstract":"<div><p>Two novel phosphors LiBa<sub>4(1‒<em>x</em>)</sub>Eu<sub>4<em>x</em></sub>Ta<sub>3</sub>O<sub>12</sub> (H-LBTO:<em>x</em>Eu<sup>3+</sup>) and Li<sub>0.25</sub>Ba<sub>1‒<em>x</em></sub>Eu<sub><em>x</em></sub>Ta<sub>0.75</sub>O<sub>3</sub> (C-LBTO:<em>x</em>Eu<sup>3+</sup>) were prepared successfully by a molten salt method. The transformation between these two structures was realized by changing the sintering temperature or changing the Eu<sup>3+</sup> ions concentration, which was also demonstrated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectra (DRS), and photoluminescence excitation (PLE) analyses. Both the sintering temperature and the Eu<sup>3+</sup> ions doping concentration have significant impact on the formation of the crystal phase. All these phosphors sintered at 1023 K exhibit two major luminescence lines at 594 and 614 nm under near-UV light of 395 nm excitation, corresponding to Eu<sup>3+</sup> ions typical transitions of <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>1</sub> and <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>2</sub>. The optimum concentration of Eu<sup>3+</sup> ions is 9 mol% for C-LBTO:<em>x</em>Eu<sup>3+</sup> samples and the quenching interaction type is the nearest-neighbor ion interaction. The thermal stability of the C-LBTO:0.09Eu<sup>3+</sup> sample was investigated in detail and the device application further suggests that C-LBTO:0.09Eu<sup>3+</sup> can be used as a red phosphor for near-UV excited w-LEDs in lighting.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1479-1488"},"PeriodicalIF":5.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47699241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Rare Earths
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1