Stephan Wiefling, Paul René Jørgensen, Sigurd Thunem, Luigi Lo Iacono
{"title":"Pump Up Password Security! Evaluating and Enhancing Risk-Based Authentication on a Real-World Large-Scale Online Service","authors":"Stephan Wiefling, Paul René Jørgensen, Sigurd Thunem, Luigi Lo Iacono","doi":"https://dl.acm.org/doi/10.1145/3546069","DOIUrl":null,"url":null,"abstract":"<p>Risk-based authentication (RBA) aims to protect users against attacks involving stolen passwords. RBA monitors features during login, and requests re-authentication when feature values widely differ from those previously observed. It is recommended by various national security organizations, and users perceive it more usable than and equally secure to equivalent two-factor authentication. Despite that, RBA is still used by very few online services. Reasons for this include a lack of validated open resources on RBA properties, implementation, and configuration. This effectively hinders the RBA research, development, and adoption progress.</p><p>To close this gap, we provide the first long-term RBA analysis on a real-world large-scale online service. We collected feature data of 3.3 million users and 31.3 million login attempts over more than 1 year. Based on the data, we provide (i) studies on RBA’s real-world characteristics plus its configurations and enhancements to balance usability, security, and privacy; (ii) a machine learning–based RBA parameter optimization method to support administrators finding an optimal configuration for their own use case scenario; (iii) an evaluation of the round-trip time feature’s potential to replace the IP address for enhanced user privacy; and (iv) a synthesized RBA dataset to reproduce this research and to foster future RBA research. Our results provide insights on selecting an optimized RBA configuration so that users profit from RBA after just a few logins. The open dataset enables researchers to study, test, and improve RBA for widespread deployment in the wild.</p>","PeriodicalId":56050,"journal":{"name":"ACM Transactions on Privacy and Security","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Privacy and Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3546069","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Risk-based authentication (RBA) aims to protect users against attacks involving stolen passwords. RBA monitors features during login, and requests re-authentication when feature values widely differ from those previously observed. It is recommended by various national security organizations, and users perceive it more usable than and equally secure to equivalent two-factor authentication. Despite that, RBA is still used by very few online services. Reasons for this include a lack of validated open resources on RBA properties, implementation, and configuration. This effectively hinders the RBA research, development, and adoption progress.
To close this gap, we provide the first long-term RBA analysis on a real-world large-scale online service. We collected feature data of 3.3 million users and 31.3 million login attempts over more than 1 year. Based on the data, we provide (i) studies on RBA’s real-world characteristics plus its configurations and enhancements to balance usability, security, and privacy; (ii) a machine learning–based RBA parameter optimization method to support administrators finding an optimal configuration for their own use case scenario; (iii) an evaluation of the round-trip time feature’s potential to replace the IP address for enhanced user privacy; and (iv) a synthesized RBA dataset to reproduce this research and to foster future RBA research. Our results provide insights on selecting an optimized RBA configuration so that users profit from RBA after just a few logins. The open dataset enables researchers to study, test, and improve RBA for widespread deployment in the wild.
期刊介绍:
ACM Transactions on Privacy and Security (TOPS) (formerly known as TISSEC) publishes high-quality research results in the fields of information and system security and privacy. Studies addressing all aspects of these fields are welcomed, ranging from technologies, to systems and applications, to the crafting of policies.