James Lembke, Srivatsan Ravi, Pierre-Louis Roman, Patrick Eugster
{"title":"Secure and Reliable Network Updates","authors":"James Lembke, Srivatsan Ravi, Pierre-Louis Roman, Patrick Eugster","doi":"https://dl.acm.org/doi/10.1145/3556542","DOIUrl":null,"url":null,"abstract":"<p>Software-defined wide area networking (SD-WAN) enables dynamic network policy control over a large distributed network via <i>network updates</i>. To be practical, network updates must be consistent (i.e., free of transient errors caused by updates to multiple switches), secure (i.e., only be executed when sent from valid controllers), and reliable (i.e., function despite the presence of faulty or malicious members in the control plane), while imposing only minimal overhead on controllers and switches.</p><p>We present SERENE: a protocol for <underline>se</underline>cure and <underline>re</underline>liable <underline>ne</underline>twork updates for SD-WAN environments. In short: Consistency is provided through the combination of an update scheduler and a distributed transactional protocol. Security is preserved by authenticating network events and updates, the latter with an adaptive threshold cryptographic scheme. Reliability is provided by replicating the control plane and making it resilient to a dynamic adversary by using a distributed ledger as a controller failure detector. We ensure practicality by providing a mechanism for scalability through the definition of independent network domains and exploiting the parallelism of network updates both within and across domains. We formally define SERENE’s protocol and prove its safety with regards to event-linearizability. Extensive experiments show that SERENE imposes minimal switch burden and scales to large networks running multiple network applications all requiring concurrent network updates, imposing at worst a 16% overhead on short-lived flow completion and negligible overhead on anticipated normal workloads.</p>","PeriodicalId":56050,"journal":{"name":"ACM Transactions on Privacy and Security","volume":"21 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Privacy and Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3556542","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Software-defined wide area networking (SD-WAN) enables dynamic network policy control over a large distributed network via network updates. To be practical, network updates must be consistent (i.e., free of transient errors caused by updates to multiple switches), secure (i.e., only be executed when sent from valid controllers), and reliable (i.e., function despite the presence of faulty or malicious members in the control plane), while imposing only minimal overhead on controllers and switches.
We present SERENE: a protocol for secure and reliable network updates for SD-WAN environments. In short: Consistency is provided through the combination of an update scheduler and a distributed transactional protocol. Security is preserved by authenticating network events and updates, the latter with an adaptive threshold cryptographic scheme. Reliability is provided by replicating the control plane and making it resilient to a dynamic adversary by using a distributed ledger as a controller failure detector. We ensure practicality by providing a mechanism for scalability through the definition of independent network domains and exploiting the parallelism of network updates both within and across domains. We formally define SERENE’s protocol and prove its safety with regards to event-linearizability. Extensive experiments show that SERENE imposes minimal switch burden and scales to large networks running multiple network applications all requiring concurrent network updates, imposing at worst a 16% overhead on short-lived flow completion and negligible overhead on anticipated normal workloads.
期刊介绍:
ACM Transactions on Privacy and Security (TOPS) (formerly known as TISSEC) publishes high-quality research results in the fields of information and system security and privacy. Studies addressing all aspects of these fields are welcomed, ranging from technologies, to systems and applications, to the crafting of policies.