{"title":"The dark side of AI-enabled HRM on employees based on AI algorithmic features","authors":"Yu Zhou, Lijun Wang, Wansi Chen","doi":"10.1108/jocm-10-2022-0308","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>AI is an emerging tool in HRM practices that has drawn increasing attention from HRM researchers and HRM practitioners. While there is little doubt that AI-enabled HRM exerts positive effects, it also triggers negative influences. Gaining a better understanding of the dark side of AI-enabled HRM holds great significance for managerial implementation and for enriching related theoretical research.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this study, the authors conducted a systematic review of the published literature in the field of AI-enabled HRM. The systematic literature review enabled the authors to critically analyze, synthesize and profile existing research on the covered topics using transparent and easily reproducible procedures.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>In this study, the authors used AI algorithmic features (comprehensiveness, instantaneity and opacity) as the main focus to elaborate on the negative effects of AI-enabled HRM. Drawing from inconsistent literature, the authors distinguished between two concepts of AI algorithmic comprehensiveness: comprehensive analysis and comprehensive data collection. The authors also differentiated instantaneity into instantaneous intervention and instantaneous interaction. Opacity was also delineated: hard-to-understand and hard-to-observe. For each algorithmic feature, this study connected organizational behavior theory to AI-enabled HRM research and elaborated on the potential theoretical mechanism of AI-enabled HRM's negative effects on employees.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Building upon the identified secondary dimensions of AI algorithmic features, the authors elaborate on the potential theoretical mechanism behind the negative effects of AI-enabled HRM on employees. This elaboration establishes a robust theoretical foundation for advancing research in AI-enable HRM. Furthermore, the authors discuss future research directions.</p><!--/ Abstract__block -->","PeriodicalId":47958,"journal":{"name":"Journal of Organizational Change Management","volume":"5 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational Change Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jocm-10-2022-0308","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
AI is an emerging tool in HRM practices that has drawn increasing attention from HRM researchers and HRM practitioners. While there is little doubt that AI-enabled HRM exerts positive effects, it also triggers negative influences. Gaining a better understanding of the dark side of AI-enabled HRM holds great significance for managerial implementation and for enriching related theoretical research.
Design/methodology/approach
In this study, the authors conducted a systematic review of the published literature in the field of AI-enabled HRM. The systematic literature review enabled the authors to critically analyze, synthesize and profile existing research on the covered topics using transparent and easily reproducible procedures.
Findings
In this study, the authors used AI algorithmic features (comprehensiveness, instantaneity and opacity) as the main focus to elaborate on the negative effects of AI-enabled HRM. Drawing from inconsistent literature, the authors distinguished between two concepts of AI algorithmic comprehensiveness: comprehensive analysis and comprehensive data collection. The authors also differentiated instantaneity into instantaneous intervention and instantaneous interaction. Opacity was also delineated: hard-to-understand and hard-to-observe. For each algorithmic feature, this study connected organizational behavior theory to AI-enabled HRM research and elaborated on the potential theoretical mechanism of AI-enabled HRM's negative effects on employees.
Originality/value
Building upon the identified secondary dimensions of AI algorithmic features, the authors elaborate on the potential theoretical mechanism behind the negative effects of AI-enabled HRM on employees. This elaboration establishes a robust theoretical foundation for advancing research in AI-enable HRM. Furthermore, the authors discuss future research directions.
期刊介绍:
■Adapting strategic planning to the need for change ■Leadership research ■Responsibility for change implementation and follow-through ■The psychology of change and its effect on the workforce ■TQM - will it work in your organization? Successful organizations respond intelligently to factors which precipitate change. Economic climates, political trends, changes in consumer demands, management policy or structure, employment levels and financial resources - all these elements are constantly at play to ensure that organizations clinging on to static structures will ultimately lose out. But change is a dynamic and alarming thing - this journal addresses how to manage it positively.