Predicting Failure of P2P Lending Platforms through Machine Learning: The Case in China

Jen-Yin Yeh, Hsin-Yu Chiu, Jhih-Huei Huang
{"title":"Predicting Failure of P2P Lending Platforms through Machine Learning: The Case in China","authors":"Jen-Yin Yeh, Hsin-Yu Chiu, Jhih-Huei Huang","doi":"arxiv-2311.14577","DOIUrl":null,"url":null,"abstract":"This study employs machine learning models to predict the failure of\nPeer-to-Peer (P2P) lending platforms, specifically in China. By employing the\nfilter method and wrapper method with forward selection and backward\nelimination, we establish a rigorous and practical procedure that ensures the\nrobustness and importance of variables in predicting platform failures. The\nresearch identifies a set of robust variables that consistently appear in the\nfeature subsets across different selection methods and models, suggesting their\nreliability and relevance in predicting platform failures. The study highlights\nthat reducing the number of variables in the feature subset leads to an\nincrease in the false acceptance rate while the performance metrics remain\nstable, with an AUC value of approximately 0.96 and an F1 score of around 0.88.\nThe findings of this research provide significant practical implications for\nregulatory authorities and investors operating in the Chinese P2P lending\nindustry.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.14577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs machine learning models to predict the failure of Peer-to-Peer (P2P) lending platforms, specifically in China. By employing the filter method and wrapper method with forward selection and backward elimination, we establish a rigorous and practical procedure that ensures the robustness and importance of variables in predicting platform failures. The research identifies a set of robust variables that consistently appear in the feature subsets across different selection methods and models, suggesting their reliability and relevance in predicting platform failures. The study highlights that reducing the number of variables in the feature subset leads to an increase in the false acceptance rate while the performance metrics remain stable, with an AUC value of approximately 0.96 and an F1 score of around 0.88. The findings of this research provide significant practical implications for regulatory authorities and investors operating in the Chinese P2P lending industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习预测P2P借贷平台的失败:以中国为例
本研究采用机器学习模型来预测P2P借贷平台的失败,特别是在中国。通过采用前向选择和后向分隔的过滤方法和包装方法,我们建立了一个严格而实用的程序,以确保变量在预测平台故障时的可靠性和重要性。研究确定了一组鲁棒变量,这些变量在不同的选择方法和模型中始终出现在特征子集中,表明它们在预测平台故障方面的可靠性和相关性。该研究强调,在性能指标保持稳定的情况下,减少特征子集中的变量数量会导致错误接受率的增加,AUC值约为0.96,F1分数约为0.88。本研究结果对中国P2P借贷行业的监管部门和投资者具有重要的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1