Development and Validation of Multivariable Prediction Models of Serological Response to SARS-CoV-2 Vaccination in Kidney Transplant Recipients

Bilgin Osmanodja, Johannes Stegbauer, Marta Kantauskaite, Lars Christian Rump, Andreas Heinzel, Roman Reindl-Schwaighofer, Rainer Oberbauer, Ilies Benotmane, Sophie Caillard, Christophe Masset, Clarisse Kerleau, Gilles Blancho, Klemens Budde, Fritz Grunow, Michael Mikhailov, Eva Schrezenmeier, Simon Ronicke
{"title":"Development and Validation of Multivariable Prediction Models of Serological Response to SARS-CoV-2 Vaccination in Kidney Transplant Recipients","authors":"Bilgin Osmanodja, Johannes Stegbauer, Marta Kantauskaite, Lars Christian Rump, Andreas Heinzel, Roman Reindl-Schwaighofer, Rainer Oberbauer, Ilies Benotmane, Sophie Caillard, Christophe Masset, Clarisse Kerleau, Gilles Blancho, Klemens Budde, Fritz Grunow, Michael Mikhailov, Eva Schrezenmeier, Simon Ronicke","doi":"10.1101/2022.06.02.22275894","DOIUrl":null,"url":null,"abstract":"Background\nRepeated vaccination against SARS-CoV-2 increases serological response in kidney transplant recipients (KTR) with high interindividual variability. No decision support tool exists to predict SARS-CoV-2 vaccination response in KTR. Methods\nWe developed, internally and externally validated five different multivariable prediction models of serological response after the third and fourth vaccine dose against SARS-CoV-2 in KTR. Using 27 candidate predictor variables, we applied statistical and machine learning approaches including logistic regression (LR), LASSO-regularized LR, random forest, and gradient boosted regression trees. For development and internal validation, data from 585 vaccinations were used. External validation was performed in four independent, international validation datasets comprising 191, 184, 254, and 323 vaccinations, respectively. Findings\nLASSO-regularized LR performed on the whole development dataset yielded a 23- and 11-variable model, respectively. External validation showed AUC-ROC of 0.855, 0.749, 0.828, and 0.787 for the sparser 11-variable model, yielding an overall performance 0.819. Interpretation\nAn 11-variable LASSO-regularized LR model predicts vaccination response in KTR with good overall accuracy. Implemented as an online tool, it can guide decisions when choosing between different immunization strategies to improve protection against COVID-19 in KTR.","PeriodicalId":501561,"journal":{"name":"medRxiv - Transplantation","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Transplantation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.06.02.22275894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Repeated vaccination against SARS-CoV-2 increases serological response in kidney transplant recipients (KTR) with high interindividual variability. No decision support tool exists to predict SARS-CoV-2 vaccination response in KTR. Methods We developed, internally and externally validated five different multivariable prediction models of serological response after the third and fourth vaccine dose against SARS-CoV-2 in KTR. Using 27 candidate predictor variables, we applied statistical and machine learning approaches including logistic regression (LR), LASSO-regularized LR, random forest, and gradient boosted regression trees. For development and internal validation, data from 585 vaccinations were used. External validation was performed in four independent, international validation datasets comprising 191, 184, 254, and 323 vaccinations, respectively. Findings LASSO-regularized LR performed on the whole development dataset yielded a 23- and 11-variable model, respectively. External validation showed AUC-ROC of 0.855, 0.749, 0.828, and 0.787 for the sparser 11-variable model, yielding an overall performance 0.819. Interpretation An 11-variable LASSO-regularized LR model predicts vaccination response in KTR with good overall accuracy. Implemented as an online tool, it can guide decisions when choosing between different immunization strategies to improve protection against COVID-19 in KTR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾移植受者对SARS-CoV-2疫苗血清学反应的多变量预测模型的建立和验证
背景反复接种SARS-CoV-2疫苗可增加肾移植受者(KTR)的血清学反应,且具有高度的个体间变异性。目前尚无决策支持工具来预测KTR地区的SARS-CoV-2疫苗接种反应。方法建立了5种不同的多变量预测模型,对KTR患者第三次和第四次接种SARS-CoV-2疫苗后血清学反应进行了内部和外部验证。使用27个候选预测变量,我们应用了统计和机器学习方法,包括逻辑回归(LR)、lasso正则化LR、随机森林和梯度增强回归树。为了开发和内部验证,使用了585种疫苗接种的数据。外部验证在四个独立的国际验证数据集中进行,分别包括191、184、254和323种疫苗接种。在整个开发数据集上执行的slaso正则化LR的发现分别产生了23和11个变量的模型。外部验证显示,对于稀疏的11变量模型,AUC-ROC为0.855,0.749,0.828和0.787,总体性能为0.819。一个11变量lasso正则化LR模型预测KTR的疫苗接种反应具有良好的总体准确性。作为一种在线工具实施,它可以指导在不同免疫战略之间进行选择,以加强对KTR中COVID-19的保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Access to Allogeneic Cell Transplantation Based on Donor Search Prognosis: An Interventional Trial Donor HLA class 1 evolutionary divergence and late allograft rejection after liver transplantation in children: an emulated target trial. Improving Deceased Donor Kidney Utilization: Predicting Risk of Nonuse with Interpretable Models Improvements in Patient-Reported Functioning after Lung Transplant is Associated with Improved Quality of Life and Survival Influence of Information Access on Organ Donation: A Questionnaire-Based Cross-Sectional Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1