Qunbiao Wu , Jiachao Luo , Haifeng Fang , Defang He , Tao Liang
{"title":"Spectral classification analysis of recycling plastics of small household appliances based on infrared spectroscopy","authors":"Qunbiao Wu , Jiachao Luo , Haifeng Fang , Defang He , Tao Liang","doi":"10.1016/j.vibspec.2023.103636","DOIUrl":null,"url":null,"abstract":"<div><p>The recycling of plastics from small household appliances is of great significance in improving the environment and addressing resource shortages, and has gradually become a focus of attention in various countries. Firstly, spectra were collected from samples with different colors, oxidation levels, and flame retardants. It was found that samples with different colors and oxidation levels exhibited different reflectivity, while samples with flame retardants showed smaller absorption peaks. Subsequently, the spectrum was preprocessed and analyzed, and the results showed that the samples collected under different conditions had little effect on plastic classification. Finally, plastic spectral classification was carried out using algorithms such as support vector machine (SVM), backpropagation neural network (BP), k-nearest neighbor (k-NN), partial least squares discriminant analysis (PLS-DA), and linear discriminant analysis (LDA). Overall, the classification accuracy of each algorithm exceeds 92 %, with SVM and PLS-DA having the best classification performance, while K-NN has relatively poor classification performance. In summary, the plastic classification algorithm for small household appliance recycling based on infrared spectroscopy can meet the actual plastic classification needs of plastic recycling plant production lines.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"130 ","pages":"Article 103636"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203123001431/pdfft?md5=46a82d1d1c635d2477a29d9f92fd64b2&pid=1-s2.0-S0924203123001431-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203123001431","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recycling of plastics from small household appliances is of great significance in improving the environment and addressing resource shortages, and has gradually become a focus of attention in various countries. Firstly, spectra were collected from samples with different colors, oxidation levels, and flame retardants. It was found that samples with different colors and oxidation levels exhibited different reflectivity, while samples with flame retardants showed smaller absorption peaks. Subsequently, the spectrum was preprocessed and analyzed, and the results showed that the samples collected under different conditions had little effect on plastic classification. Finally, plastic spectral classification was carried out using algorithms such as support vector machine (SVM), backpropagation neural network (BP), k-nearest neighbor (k-NN), partial least squares discriminant analysis (PLS-DA), and linear discriminant analysis (LDA). Overall, the classification accuracy of each algorithm exceeds 92 %, with SVM and PLS-DA having the best classification performance, while K-NN has relatively poor classification performance. In summary, the plastic classification algorithm for small household appliance recycling based on infrared spectroscopy can meet the actual plastic classification needs of plastic recycling plant production lines.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.