Every year, more than 5 million deaths are attributed to injuries worldwide. However, accurately identifying and distinguishing the types of injuries in decomposed corpses is a significant challenge in forensic identification. Determining the cause of death in cases involving decomposed cadavers is particularly difficult, because traditional methods often lack conclusive evidence. To address this gap, this study aimed to explore the potential of attenuated total reflection/Fourier-transform infrared (ATR-FTIR) spectroscopy in analyzing the molecular composition changes in tissue samples from putrefied corpses. To simulate different environmental conditions, 54 experimental mice were randomly divided into three groups: ante-mortem injury (AI), post-mortem injury (PI), and non-injury (NI) groups, and their bodies were monitored at different time points. Subsequently, we conducted comprehensive analyses of these tissue samples using ATR-FTIR. The results indicate that under winter conditions, PC1 explained 78.3 % of the variance, whereas PC2 explained 15.4 %. Similarly, under summer conditions, PC1 explained 75.3 % of the variance, whereas PC2 explained 16.1 %. The results under both conditions, the AUC values of the ROC curve exceeded 0.9, indicating the reliability and accuracy of this method in discriminating ante-mortem injuries from post-mortem injuries on decomposed bodies, highlighting its significance in forensic investigations. This demonstrates the capability of ATR-FTIR technology to identify distinct molecular changes linked to ante-mortem and post-mortem injuries in decomposed corpses. The findings of this study underscores the forensic significance of understanding the molecular composition changes in decomposed cadavers. Therefore, ATR-FTIR is a valuable tool for differentiating ante-mortem and post-mortem injuries while also considering environmental factors.
Taaffeite (BeMg3Al8O16) and musgravite (Be(Mg,Fe,Zn)2Al6O12) are two of the rarest gem kinds worldwide, and their scarcity greatly enhances their extraordinary worth. Due to their nearly matched physical properties, discriminating between the two gems using basic gemological equipment will be exceedingly difficult, considering that they both belong to the same mineral family. Distinguishing between these two categories is crucial due to the substantial variation in their rarity levels, which greatly impacts on their market pricing. Nevertheless, there is a lack of published data in the scientific literature about the spectroscopic characterization of musgravite and taaffeite.
In this article, ATR-FTIR spectroscopy successfully distinguished Tanzanian musgravite from taaffeite for the first time. In addition, Raman spectroscopy and EPMA are employed for the identification of musgravite and taaffeite specimens. The EPMA results confirm that the Tanzanian gems under investigation have similar elemental compositions to those of the same kinds of stones discovered from other sources. The peaks observed in the ATR and Raman spectra serve as indicators for distinguishing between musgravite and taaffeite gemstones, with the goal of simplifying the identification process. The ATR and Raman spectra of musgravite and taaffeite are comprehensively analyzed and found to be achievable. The main Raman bands used to identify Tanzanian musgravite are situated at 412 and 713 cm−1, whereas for taaffeite, the significant bands were detected at 416 and 761 cm−1. The distinct ATR bands observed at 773 cm−1, corresponding to the vibration of Al–O, can be efficiently utilized as indications to differentiate Tanzanian musgravite from taaffeite. The results prove that ATR-FTIR spectroscopy, like Raman spectroscopy, is a very effective non-invasive method for rapidly distinguishing these precious gemstones.
High-throughput on-line Raman detection has become commonplace in pharmaceutical and PAT. This has increased the demand for efficient, parallel spectral detection. In this work, a method of adjusting the optical structure parameters through multi-field theory is proposed to realize the detector accepting two spectral information from the light source at the same time. By combining two Raman probes and two customized Y-fibers, Raman spectra of two samples at the same laser power can be acquired simultaneously online. Compared with the multi-channel Raman spectroscopy detection system based on microscope device and multiple Raman spectroscopy coupling system, the measurement time and cost are greatly reduced. Thus, dual-channel Raman spectroscopy detection devices provide a cost and time-saving method for modern high-throughput on-line Raman detection.