Xiaolin Gu, Wenjia Wu, Aibo Song, Ming Yang, Zhen Ling, Junzhou Luo
{"title":"RF-TESI: Radio Frequency Fingerprint-based Smartphone Identification under Temperature Variation","authors":"Xiaolin Gu, Wenjia Wu, Aibo Song, Ming Yang, Zhen Ling, Junzhou Luo","doi":"10.1145/3636462","DOIUrl":null,"url":null,"abstract":"<p>Radio frequency fingerprint identification (RFFI) is a promising technique for smartphone identification. However, we find that the temperature of the RF front end in smartphones can significantly impact the RF features, including the carrier frequency offset (CFO) and statistical RF features. The unstable RF features caused by temperature changes can negatively affect the performance of state-of-the-art RFFI approaches. To this end, we propose the RF-TESI solution for smartphone identification under temperature variation. First, we construct a dataset by extracting temperature and RF features. In the dataset, the extracted temperature values constitute a set of temperature values and each registered temperature value corresponds to a group of RF features. Next, we evaluate the distinctiveness of RF features across smartphones to select the most suitable RF fingerprint. Then, we train multiple random forest models, each tagged with a registered temperature. In addition, because there are still many temperatures out of the temperature set, we design a RF fingerprint estimation method to estimate RF fingerprints at unregistered temperatures. Finally, the experiments show RF-TESI demonstrates satisfactory performance under different scenarios, taking into account variations in temperature, time and position. Besides, our proposed approach is better than all state-of-art approaches in smartphone identification.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"93 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3636462","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Radio frequency fingerprint identification (RFFI) is a promising technique for smartphone identification. However, we find that the temperature of the RF front end in smartphones can significantly impact the RF features, including the carrier frequency offset (CFO) and statistical RF features. The unstable RF features caused by temperature changes can negatively affect the performance of state-of-the-art RFFI approaches. To this end, we propose the RF-TESI solution for smartphone identification under temperature variation. First, we construct a dataset by extracting temperature and RF features. In the dataset, the extracted temperature values constitute a set of temperature values and each registered temperature value corresponds to a group of RF features. Next, we evaluate the distinctiveness of RF features across smartphones to select the most suitable RF fingerprint. Then, we train multiple random forest models, each tagged with a registered temperature. In addition, because there are still many temperatures out of the temperature set, we design a RF fingerprint estimation method to estimate RF fingerprints at unregistered temperatures. Finally, the experiments show RF-TESI demonstrates satisfactory performance under different scenarios, taking into account variations in temperature, time and position. Besides, our proposed approach is better than all state-of-art approaches in smartphone identification.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.