Barrier, converting, and tray-forming properties of paperboard packaging materials coated with waterborne dispersions

IF 2.8 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Packaging Technology and Science Pub Date : 2023-12-05 DOI:10.1002/pts.2784
Andrea Marinelli, Johanna Lyytikäinen, Panu Tanninen, Barbara Del Curto, Ville Leminen
{"title":"Barrier, converting, and tray-forming properties of paperboard packaging materials coated with waterborne dispersions","authors":"Andrea Marinelli, Johanna Lyytikäinen, Panu Tanninen, Barbara Del Curto, Ville Leminen","doi":"10.1002/pts.2784","DOIUrl":null,"url":null,"abstract":"In this work, different food-contact experimental and commercial aqueous polymeric dispersions were applied to paperboard via rod coating technology to achieve &lt;5% non-cellulosic content. Barrier (water, moisture and grease), mechanical (tensile and bending) and converting (heat-sealing and creasing) properties were analysed before tray formation trials on pilot-scale equipment. Dispersion-coated samples were compared against polyethylene terephthalate (PET) extrusion-coated paperboard, the principal industrial material used for food trays. Results show that, within the investigated properties, waterborne dispersions can achieve similar barrier properties compared with PET, yet at lower dry coat grammage (12 g/m<sup>2</sup> vs. 40 g/m<sup>2</sup> of PET-coated paperboard). Additionally, the investigated coatings heat-sealed at temperatures as low as 80–90°C, almost 100°C less than PET; however, lower seal forces could be achieved (15–20 N/(25 mm) vs. 23 N/(25 mm) of PET-coated paperboard). Paperboard delamination occurred at the highest seal forces. Dispersion-coated trays were obtained at 4.5–5.0% blank moisture content. Formed trays at industrial processing parameters showed critical coating damage during converting due to tensile stresses. This work shows that milder processing conditions allow a reduction in coat defects.","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"268 1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2784","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, different food-contact experimental and commercial aqueous polymeric dispersions were applied to paperboard via rod coating technology to achieve <5% non-cellulosic content. Barrier (water, moisture and grease), mechanical (tensile and bending) and converting (heat-sealing and creasing) properties were analysed before tray formation trials on pilot-scale equipment. Dispersion-coated samples were compared against polyethylene terephthalate (PET) extrusion-coated paperboard, the principal industrial material used for food trays. Results show that, within the investigated properties, waterborne dispersions can achieve similar barrier properties compared with PET, yet at lower dry coat grammage (12 g/m2 vs. 40 g/m2 of PET-coated paperboard). Additionally, the investigated coatings heat-sealed at temperatures as low as 80–90°C, almost 100°C less than PET; however, lower seal forces could be achieved (15–20 N/(25 mm) vs. 23 N/(25 mm) of PET-coated paperboard). Paperboard delamination occurred at the highest seal forces. Dispersion-coated trays were obtained at 4.5–5.0% blank moisture content. Formed trays at industrial processing parameters showed critical coating damage during converting due to tensile stresses. This work shows that milder processing conditions allow a reduction in coat defects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涂有水性分散体的纸板包装材料的阻隔、加工和托盘成型性能
在这项工作中,通过棒状涂布技术将不同的食品接触实验性和商用水性聚合物分散体涂布到纸板上,以达到<5%的非纤维素含量。在中试设备上进行纸盘成型试验之前,对纸盘的阻隔(防水、防潮和防油脂)、机械(拉伸和弯曲)和加工(热封和压痕)性能进行了分析。将分散涂布样品与聚对苯二甲酸乙二酯(PET)挤出涂布纸板(食品托盘的主要工业材料)进行了比较。结果表明,在所调查的特性范围内,水性分散体可以获得与 PET 相似的阻隔特性,但干涂层克重较低(12 克/平方米对 PET 涂层纸板的 40 克/平方米)。此外,所研究的涂层可在低至 80-90°C 的温度下进行热封,比 PET 低近 100°C;但可实现较低的密封力(15-20 牛顿/(25 毫米),而 PET 涂层纸板的密封力为 23 牛顿/(25 毫米))。在最高密封力下,纸板会出现分层。在空白水分含量为 4.5-5.0% 的情况下,可获得分散涂层纸盘。在工业加工参数下成型的纸盘在加工过程中由于拉伸应力而出现严重的涂层损坏。这项工作表明,较温和的加工条件可减少涂层缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Packaging Technology and Science
Packaging Technology and Science 工程技术-工程:制造
CiteScore
4.90
自引率
7.70%
发文量
78
审稿时长
>12 weeks
期刊介绍: Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field. The Journal welcomes contributions in a wide range of areas in packaging technology and science, including: -Active packaging -Aseptic and sterile packaging -Barrier packaging -Design methodology -Environmental factors and sustainability -Ergonomics -Food packaging -Machinery and engineering for packaging -Marketing aspects of packaging -Materials -Migration -New manufacturing processes and techniques -Testing, analysis and quality control -Transport packaging
期刊最新文献
Electrospinning in Food Packaging: Current Trend and Future Direction Drivers and Barriers Influencing Consumers' Intention to Purchase Cosmetics With Refillable Packaging Cellulose Extraction From Green Algae, Ulva Ohnoi, and Its Application to PVA-Based Antibacterial Composite Films Incorporated With Zinc Oxide Nanoparticles Pectin From Fruit Peel Waste: A Sustainable Source for Production of Active Packaging Films Effects of Storage Temperatures and Times on Drying Chicken Breasts Using Film-Drying: A New Application of Polymeric Film for Food Preservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1