A Characterization of Optimal Prediction Measures via $\ell_1$ Minimization

Len Bos
{"title":"A Characterization of Optimal Prediction Measures via $\\ell_1$ Minimization","authors":"Len Bos","doi":"arxiv-2312.03091","DOIUrl":null,"url":null,"abstract":"Suppose that $K\\subset\\C$ is compact and that $z_0\\in\\C\\backslash K$ is an\nexternal point. An optimal prediction measure for regression by polynomials of\ndegree at most $n,$ is one for which the variance of the prediction at $z_0$ is\nas small as possible. Hoel and Levine (\\cite{HL}) have considered the case of\n$K=[-1,1]$ and $z_0=x_0\\in \\R\\backslash [-1,1],$ where they show that the\nsupport of the optimal measure is the $n+1$ extremme points of the Chebyshev\npolynomial $T_n(x)$ and characterizing the optimal weights in terms of absolute\nvalues of fundamental interpolating Lagrange polynomials. More recently,\n\\cite{BLO} has given the equivalence of the optimal prediction problem with\nthat of finding polynomials of extremal growth. They also study in detail the\ncase of $K=[-1,1]$ and $z_0=ia\\in i\\R,$ purely imaginary. In this work we\ngeneralize the Hoel-Levine formula to the general case when the support of the\noptimal measure is a finite set and give a formula for the optimal weights in\nterms of a $\\ell_1$ minimization problem.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that $K\subset\C$ is compact and that $z_0\in\C\backslash K$ is an external point. An optimal prediction measure for regression by polynomials of degree at most $n,$ is one for which the variance of the prediction at $z_0$ is as small as possible. Hoel and Levine (\cite{HL}) have considered the case of $K=[-1,1]$ and $z_0=x_0\in \R\backslash [-1,1],$ where they show that the support of the optimal measure is the $n+1$ extremme points of the Chebyshev polynomial $T_n(x)$ and characterizing the optimal weights in terms of absolute values of fundamental interpolating Lagrange polynomials. More recently, \cite{BLO} has given the equivalence of the optimal prediction problem with that of finding polynomials of extremal growth. They also study in detail the case of $K=[-1,1]$ and $z_0=ia\in i\R,$ purely imaginary. In this work we generalize the Hoel-Levine formula to the general case when the support of the optimal measure is a finite set and give a formula for the optimal weights in terms of a $\ell_1$ minimization problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 $\ell_1$ 最小化确定最佳预测措施的特征
假设 $K\subset\C$ 是紧凑的,并且 $z_0\in\Cbackslash K$ 是一个外部点。用最多为$n,$的多项式进行回归的最优预测度量是使$z_0$处的预测方差尽可能小的度量。Hoel 和 Levine(\cite{HL})考虑了 $K=[-1,1]$ 和 $z_0=x_0\in \Rbackslash [-1,1] $ 的情况,在这种情况下,他们证明了最优度量的支撑点是切比雪夫多项式 $T_n(x)$ 的 $n+1$ 极值点,并用基本插值拉格朗日多项式的绝对值描述了最优权重。最近,\cite{BLO}给出了最优预测问题与寻找极值增长多项式问题的等价性。他们还详细研究了 $K=[-1,1]$ 和 $z_0=ia\in i\R,$ 纯虚的情况。在这项工作中,我们将 Hoel-Levine 公式推广到最优度量的支持是有限集的一般情况,并给出了最优权重与 $\ell_1$ 最小化问题的关系式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1