Product structure of graph classes with bounded treewidth

Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood
{"title":"Product structure of graph classes with bounded treewidth","authors":"Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood","doi":"10.1017/s0963548323000457","DOIUrl":null,"url":null,"abstract":"<p>We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the <span>underlying treewidth</span> of a graph class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal{G}$</span></span></img></span></span> to be the minimum non-negative integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$c$</span></span></img></span></span> such that, for some function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f$</span></span></img></span></span>, for every graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G \\in \\mathcal{G}$</span></span></img></span></span> there is a graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{tw}(H) \\leqslant c$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> is isomorphic to a subgraph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$H \\boxtimes K_{f(\\textrm{tw}(G))}$</span></span></img></span></span>. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>; the class of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$K_{s,t}$</span></span></img></span></span>-minor-free graphs has underlying treewidth <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$s$</span></span></img></span></span> (for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$t \\geqslant \\max \\{s,3\\}$</span></span></img></span></span>); and the class of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$K_t$</span></span></img></span></span>-minor-free graphs has underlying treewidth <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$t-2$</span></span></img></span></span>. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> subgraph has bounded underlying treewidth if and only if every component of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is a subdivided star, and that the class of graphs with no induced <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline17.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> subgraph has bounded underlying treewidth if and only if every component of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline18.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is a star.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the underlying treewidth of a graph class Abstract Image$\mathcal{G}$ to be the minimum non-negative integer Abstract Image$c$ such that, for some function Abstract Image$f$, for every graph Abstract Image$G \in \mathcal{G}$ there is a graph Abstract Image$H$ with Abstract Image$\textrm{tw}(H) \leqslant c$ such that Abstract Image$G$ is isomorphic to a subgraph of Abstract Image$H \boxtimes K_{f(\textrm{tw}(G))}$. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth Abstract Image$3$; the class of Abstract Image$K_{s,t}$-minor-free graphs has underlying treewidth Abstract Image$s$ (for Abstract Image$t \geqslant \max \{s,3\}$); and the class of Abstract Image$K_t$-minor-free graphs has underlying treewidth Abstract Image$t-2$. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no Abstract Image$H$ subgraph has bounded underlying treewidth if and only if every component of Abstract Image$H$ is a subdivided star, and that the class of graphs with no induced Abstract Image$H$ subgraph has bounded underlying treewidth if and only if every component of Abstract Image$H$ is a star.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有界树宽图类的乘积结构
我们的研究表明,许多具有有界树宽(treewidth)的图可以被描述为具有较小树宽的图与有界大小的完整图的强积的子图。为此,我们将图类 $\mathcal{G}$ 的底层树宽定义为最小非负整数 $c$,使得对于某个函数 $f$、对于每一个在 $mathcal{G}$ 中的图 $G,都有一个具有 $\textrm{tw}(H) (leqslant c)的图 $H$,使得 $G$ 与 $H 的一个子图 (boxtimes K_{f(\textrm{tw}(G))}$ 同构。我们引入了图的无接缝覆盖,并证明它们决定了任何图类的底层树宽。利用这一结果,我们证明了平面图类的底层树宽为 $3$;$K_{s,t}$-minor-free 图类的底层树宽为 $s$(对于 $t \geqslant \max \{s,3\}$);$K_t$-minor-free 图类的底层树宽为 $t-2$。一般来说,我们证明了当且仅当一个单调类排除了某个固定的拓扑次要图时,它才具有有界的底层树宽。我们还研究了由排除子图或排除诱导子图定义的图类的底层树宽。我们证明,当且仅当 $H$ 的每个分量都是细分星形时,没有 $H$ 子图的图类具有有界底层树宽;当且仅当 $H$ 的每个分量都是星形时,没有诱导 $H$ 子图的图类具有有界底层树宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new formula for the determinant and bounds on its tensor and Waring ranks On the Ramsey numbers of daisies I On the Ramsey numbers of daisies II List packing number of bounded degree graphs Counting spanning subgraphs in dense hypergraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1