A DFT approach toward designing selenophene-based unfused small molecule acceptors by end-capped modification for improving the photovoltaic performance of organic solar cells
Jaweria Rukhsar, Muhammad Waqas, Muhamed Salim Akhter, Mohamed Shaban, Sameerah I. Al-Saeedi, Muhammad Shabir Mahr, Tamer H. A. Hasanin, Mahmoud A. A. Ibrahim, Naifa S. Alatawi, Rasheed Ahmad Khera
{"title":"A DFT approach toward designing selenophene-based unfused small molecule acceptors by end-capped modification for improving the photovoltaic performance of organic solar cells","authors":"Jaweria Rukhsar, Muhammad Waqas, Muhamed Salim Akhter, Mohamed Shaban, Sameerah I. Al-Saeedi, Muhammad Shabir Mahr, Tamer H. A. Hasanin, Mahmoud A. A. Ibrahim, Naifa S. Alatawi, Rasheed Ahmad Khera","doi":"10.1002/poc.4587","DOIUrl":null,"url":null,"abstract":"<p>In this study, we have developed a series of eight non-fullerene acceptors, constituting A-D-A type small molecules named (SS1–SS8) to enlighten the open-circuit voltage (<i>V</i><sub>oc</sub>) and the efficacy of pre-existed SR (reference) molecule. Density functional theory has been adopted to computationally assess the optoelectronic features of fabricated molecules with the B3LYP/6-31G (d, p) level of theory. Several factors like charge transfer, light absorption, binding energy, dipole moment, and reorganization energy are studied. The frontier orbitals analysis revealed that all the newly developed molecules have less bandgap (ranging from 1.97 to 2.22 eV) than SR (2.23 eV). Similarly, these newly engineered molecules also revealed better light absorption by screening remarkable redshift from 676.23 to 789.28 nm than SR (673.83 nm) in chloroform. These molecules have remarkably reduced excitation energy ranging from 1.71 to 1.83 eV than SR 1.84 eV. The exclusive CT analysis is carried out via J61:SS8 complex because of the higher <i>V</i><sub>oc</sub> of SS8 (acceptor). Additionally, SS8 has shown the least energy loss, making it a strong contender to be used to develop improved OSCs. Because of the exceptionally improved characteristics, these newly engineered molecules (especially SS8) can be considered potential aspirants for fabricating proficient OSCs.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4587","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we have developed a series of eight non-fullerene acceptors, constituting A-D-A type small molecules named (SS1–SS8) to enlighten the open-circuit voltage (Voc) and the efficacy of pre-existed SR (reference) molecule. Density functional theory has been adopted to computationally assess the optoelectronic features of fabricated molecules with the B3LYP/6-31G (d, p) level of theory. Several factors like charge transfer, light absorption, binding energy, dipole moment, and reorganization energy are studied. The frontier orbitals analysis revealed that all the newly developed molecules have less bandgap (ranging from 1.97 to 2.22 eV) than SR (2.23 eV). Similarly, these newly engineered molecules also revealed better light absorption by screening remarkable redshift from 676.23 to 789.28 nm than SR (673.83 nm) in chloroform. These molecules have remarkably reduced excitation energy ranging from 1.71 to 1.83 eV than SR 1.84 eV. The exclusive CT analysis is carried out via J61:SS8 complex because of the higher Voc of SS8 (acceptor). Additionally, SS8 has shown the least energy loss, making it a strong contender to be used to develop improved OSCs. Because of the exceptionally improved characteristics, these newly engineered molecules (especially SS8) can be considered potential aspirants for fabricating proficient OSCs.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.