首页 > 最新文献

Journal of Physical Organic Chemistry最新文献

英文 中文
Exploring Spectral and Electrochemical Behavior of Hydroxy-N-Benzylideneanilines by Integrated Theoretical and Experimental Approaches 通过综合理论和实验方法探索羟基-N-苄叉苯胺的光谱和电化学行为
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-09-23 DOI: 10.1002/poc.4659
Prabhudatta Hota, Supriya Priyambada Biswal, Manas Ranjan Dash, Bijnyan Ranjan Das, Pramila Kumari Misra

The present work explored the effect of –OH group substitution (o/p) on the spectral and electrochemical behavior of N-benzylideneaniline. The geometry optimization of unsubstituted and (o/p)-OH-substituted analogs revealed the coplanarity of the molecules. The vibrational spectra of the compounds were computed using density functional theory (DFT) and compared with the experimental data. The observed bands were assigned based on total energy distribution (TED). Predicted electronic absorption spectra from time-dependent density functional theory (TD-DFT) calculation were compared with the UV–visible spectra of the molecules. The analysis of the lowest spin-allowed (singlet-singlet) excited states divulged possible electronic transition. The o-substituted benzylideneaniline possessed the lowest highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gap among the substituted and unsubstituted analogs. The intramolecular contacts were interpreted using natural bond orbital and localized molecular orbital analysis. The –CH=N– linkage was investigated as a bridge for the electron delocalization from the donor to acceptor moieties. The manifestation of a reduction peak in the cyclic voltammetric studies confirmed the electrochemical behavior in the –OH-substituted molecule, which was diffusion-controlled. The discrepancy in the electrochemical property concerning the position of the –OH substituent of the candidate molecules was put forward.

本研究探讨了 -OH 基团取代 (o/p) 对 N-苄叉苯胺光谱和电化学行为的影响。通过对未取代和(o/p)-OH 取代的类似物进行几何优化,发现了分子的共面性。利用密度泛函理论(DFT)计算了这些化合物的振动光谱,并与实验数据进行了比较。观察到的频带是根据总能量分布(TED)分配的。根据时间相关密度泛函理论(TD-DFT)计算得出的预测电子吸收光谱与分子的紫外可见光谱进行了比较。对最低自旋允许激发态(单电子-单电子)的分析揭示了可能的电子转变。在取代和未取代的类似物中,邻取代的苯亚甲基苯胺具有最低的最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)能隙。利用自然键轨道和局部分子轨道分析解释了分子内接触。研究发现,-CH=N- 连接是电子从供体向受体分子偏移的桥梁。在循环伏安研究中出现的还原峰证实了 -OH 取代分子的电化学行为是扩散控制的。候选分子中 -OH 取代基位置不同,电化学性质也不同。
{"title":"Exploring Spectral and Electrochemical Behavior of Hydroxy-N-Benzylideneanilines by Integrated Theoretical and Experimental Approaches","authors":"Prabhudatta Hota,&nbsp;Supriya Priyambada Biswal,&nbsp;Manas Ranjan Dash,&nbsp;Bijnyan Ranjan Das,&nbsp;Pramila Kumari Misra","doi":"10.1002/poc.4659","DOIUrl":"https://doi.org/10.1002/poc.4659","url":null,"abstract":"<div>\u0000 \u0000 <p>The present work explored the effect of –OH group substitution (o/p) on the spectral and electrochemical behavior of N-benzylideneaniline. The geometry optimization of unsubstituted and (o/p)-OH-substituted analogs revealed the coplanarity of the molecules. The vibrational spectra of the compounds were computed using density functional theory (DFT) and compared with the experimental data. The observed bands were assigned based on total energy distribution (TED). Predicted electronic absorption spectra from time-dependent density functional theory (TD-DFT) calculation were compared with the UV–visible spectra of the molecules. The analysis of the lowest spin-allowed (singlet-singlet) excited states divulged possible electronic transition. The o-substituted benzylideneaniline possessed the lowest highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gap among the substituted and unsubstituted analogs. The intramolecular contacts were interpreted using natural bond orbital and localized molecular orbital analysis. The –CH=N– linkage was investigated as a bridge for the electron delocalization from the donor to acceptor moieties. The manifestation of a reduction peak in the cyclic voltammetric studies confirmed the electrochemical behavior in the –OH-substituted molecule, which was diffusion-controlled. The discrepancy in the electrochemical property concerning the position of the –OH substituent of the candidate molecules was put forward.</p>\u0000 </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlating Chemical Structure and Charge Carrier Dynamics in Phenanthrocarbazole-Based Hole Transporting Materials for Efficient Perovskite Solar Cells 关联菲罗咔唑基空穴传输材料中的化学结构和电荷载流子动力学以实现高效的过氧化物太阳能电池
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-09-23 DOI: 10.1002/poc.4662
Muzammil Hussain, Muhammad Adnan, Zobia Irshad, Riaz Hussain, Hany W. Darwish, Jongchul Lim

Polymeric hole transport materials (HTMs) have emerged because of their potential to produce dopant-free, efficient, and stable perovskite solar cells (PSCs). Therefore, we engineered 10 novel donor materials (SMH1–SMH10) containing phenanthrocarbazole-based polymeric structures for organic and PSCs. These molecules underwent bridging-core modifications using different spacers, such as furan (N1), pyrrole (N2), benzene (N3), pyrazine (N4), dioxane (N5), isoxazole (N6), isoindole (N7), indolizine (N8), double bond (N9), and pyrimidine (N10), in comparison to reference molecule R. The study examined the structure–property relationship and the impact of these modifications on the optical, photovoltaic, photophysical, and optoelectronic characteristics of the newly designed SMH1–SMH10 series. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were conducted to analyze frontier molecular orbitals, density of states, reorganization energies, open-circuit voltage, transition density matrix, and charge transfer processes. Results show that the newly designed molecules (SMH1–SMH10) exhibited superior optoelectronics characteristics compared to the R molecule. Among these, SMH4 is the most promising candidate, with a small band gap (2.79 eV), low electron and hole mobility (λe 0.0028 eV, λh 0.0020 eV), lower binding energy (Eb 0.58 eV), high λmax values (656.42 nm in gas, 573.34 nm in chlorobenzene), and a high Voc of 1.30 V. Therefore, this study demonstrated that bridging-core modifications offer a simple and effective strategy for designing desirable characteristics molecules for photovoltaic applications.

聚合物空穴传输材料(HTMs)因其具有生产无掺杂剂、高效、稳定的过氧化物太阳能电池(PSCs)的潜力而崭露头角。因此,我们设计了 10 种新型供体材料(SMH1-SMH10),这些材料含有基于菲咯咔唑的聚合物结构,可用于有机和 PSCs。与参考分子 R 相比,这些分子使用不同的间隔物进行了桥核修饰,如呋喃(N1)、吡咯(N2)、苯(N3)、吡嗪(N4)、二噁烷(N5)、异噁唑(N6)、异吲哚(N7)、吲哚利嗪(N8)、双键(N9)和嘧啶(N10)。研究考察了结构-性能关系以及这些修饰对新设计的 SMH1-SMH10 系列的光学、光伏、光物理和光电特性的影响。密度泛函理论(DFT)和时变密度泛函理论(TD-DFT)计算分析了前沿分子轨道、状态密度、重组能、开路电压、过渡密度矩阵和电荷转移过程。结果表明,与 R 分子相比,新设计的分子(SMH1-SMH10)表现出更优越的光电特性。其中,SMH4 是最有前途的候选分子,它具有较小的带隙(2.79 eV)、较低的电子和空穴迁移率(λe 0.0028 eV,λh 0.0020 eV)、较低的结合能(Eb 0.58 eV)、较高的 λmax 值(气体中为 656.42 nm,氯苯中为 573.34 nm)和 1.30 V 的高 Voc。因此,这项研究表明,桥核修饰为设计用于光伏应用的理想特性分子提供了一种简单而有效的策略。
{"title":"Correlating Chemical Structure and Charge Carrier Dynamics in Phenanthrocarbazole-Based Hole Transporting Materials for Efficient Perovskite Solar Cells","authors":"Muzammil Hussain,&nbsp;Muhammad Adnan,&nbsp;Zobia Irshad,&nbsp;Riaz Hussain,&nbsp;Hany W. Darwish,&nbsp;Jongchul Lim","doi":"10.1002/poc.4662","DOIUrl":"https://doi.org/10.1002/poc.4662","url":null,"abstract":"<div>\u0000 \u0000 <p>Polymeric hole transport materials (HTMs) have emerged because of their potential to produce dopant-free, efficient, and stable perovskite solar cells (PSCs). Therefore, we engineered 10 novel donor materials (SMH1–SMH10) containing phenanthrocarbazole-based polymeric structures for organic and PSCs. These molecules underwent bridging-core modifications using different spacers, such as furan (N1), pyrrole (N2), benzene (N3), pyrazine (N4), dioxane (N5), isoxazole (N6), isoindole (N7), indolizine (N8), double bond (N9), and pyrimidine (N10), in comparison to reference molecule R. The study examined the structure–property relationship and the impact of these modifications on the optical, photovoltaic, photophysical, and optoelectronic characteristics of the newly designed SMH1–SMH10 series. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were conducted to analyze frontier molecular orbitals, density of states, reorganization energies, open-circuit voltage, transition density matrix, and charge transfer processes. Results show that the newly designed molecules (SMH1–SMH10) exhibited superior optoelectronics characteristics compared to the R molecule. Among these, SMH4 is the most promising candidate, with a small band gap (2.79 eV), low electron and hole mobility (<i>λ</i><sub>e</sub> 0.0028 eV, <i>λ</i><sub>h</sub> 0.0020 eV), lower binding energy (<i>E</i><sub>b</sub> 0.58 eV), high <i>λ</i><sub>max</sub> values (656.42 nm in gas, 573.34 nm in chlorobenzene), and a high <i>V</i><sub>oc</sub> of 1.30 V. Therefore, this study demonstrated that bridging-core modifications offer a simple and effective strategy for designing desirable characteristics molecules for photovoltaic applications.</p>\u0000 </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Theoretical Perspective on the Stereochemistry of Benzoanellated Aroyl-X,N-Ketene Acetal Derivatives 苯甲酰-X,N-酮醛衍生物立体化学的理论视角
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-09-22 DOI: 10.1002/poc.4658
Francisco A. Martins, Matheus P. Freitas

Ketene 1,3-oxazoles and their derivatives present intriguing structures for the study of rotational barriers due to their pseudo–double-bond character stemming from resonance in the ketene moiety. A diverse range of compounds featuring this motif underwent quantum-chemical investigation to elucidate the nature of the stereochemical singularity observed in numerous cases. Because rotational barriers in most instances are too high to permit rapid interconversion, the findings are ascribed to thermodynamic rather than kinetic factors in the gas phase and within an implicit polar medium. The stabilities are attributed to internal hydrogen bonding where feasible. However, in cases where this is not possible, chalcogen bonding rather than steric effects governs the stereochemical preferences, particularly when S and Se comprise the heterocycle of these compounds. These findings hold promise for guiding the design of compounds whose properties hinge on stereochemistry and resonant structures, such as dyes.

烯酮 1,3-oxazoles 及其衍生物具有源自烯酮分子共振的伪双键特性,因此是研究旋转障碍的有趣结构。我们对具有这种结构的各种化合物进行了量子化学研究,以阐明在许多情况下观察到的立体化学奇异性的性质。由于大多数情况下旋转障碍过高,无法实现快速相互转化,因此研究结果归因于气相和隐含极性介质中的热力学因素而非动力学因素。在可行的情况下,这些稳定性归因于内部氢键。然而,在不可能做到这一点的情况下,立体化学偏好是由缩醛键而不是立体效应决定的,特别是当 S 和 Se 构成这些化合物的杂环时。这些发现有望指导那些性质取决于立体化学和共振结构的化合物(如染料)的设计。
{"title":"A Theoretical Perspective on the Stereochemistry of Benzoanellated Aroyl-X,N-Ketene Acetal Derivatives","authors":"Francisco A. Martins,&nbsp;Matheus P. Freitas","doi":"10.1002/poc.4658","DOIUrl":"https://doi.org/10.1002/poc.4658","url":null,"abstract":"<div>\u0000 \u0000 <p>Ketene 1,3-oxazoles and their derivatives present intriguing structures for the study of rotational barriers due to their pseudo–double-bond character stemming from resonance in the ketene moiety. A diverse range of compounds featuring this motif underwent quantum-chemical investigation to elucidate the nature of the stereochemical singularity observed in numerous cases. Because rotational barriers in most instances are too high to permit rapid interconversion, the findings are ascribed to thermodynamic rather than kinetic factors in the gas phase and within an implicit polar medium. The stabilities are attributed to internal hydrogen bonding where feasible. However, in cases where this is not possible, chalcogen bonding rather than steric effects governs the stereochemical preferences, particularly when S and Se comprise the heterocycle of these compounds. These findings hold promise for guiding the design of compounds whose properties hinge on stereochemistry and resonant structures, such as dyes.</p>\u0000 </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Hyperpolarizabilities Through p-Phenylene Bridges: Computational Studies on Metamerism and Functional Molecular Properties of Pyridinium–Dicyanomethanide-Based Zwitterions 通过对苯桥增强超极化能力:关于吡啶鎓-二氰基甲烷基偶聚物的同素异形体和功能分子特性的计算研究
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-09-10 DOI: 10.1002/poc.4657
Sanyasi Sitha

Para-phenylene-bridged pyridinium (acceptor)–dicyanomethanide (donor)-based zwitterions were computationally investigated and are reported here. Reichardt's metamer was found to be twisted and Brooker's metamer in near-planar conformation. Natural bond orbital (NBO) analysis showed that mesomeric resonance is helping Brooker's metamer but found to be not helpful for Reichardt's metamer. To assess the impacts of metamerism and aromatic bridges, fundamental molecular properties like dipole moments (μ), polarizabilities (α), hyperpolarizabilities (β), and adiabatic absorptions of these two molecules were analyzed and then directly compared with their counterpart zwitterions without any bridges (previously reported). Results of impact of metamerism: Reichardt's metamer showed around three times enhanced hyperpolarizabilities (ωB97xD: β = 1577.1 × 10−30 esu) than the Brooker's metamer (ωB97xD: β = 532.5 × 10−30 esu). Impacts of p-phenylene bridges: Compared to their respective D–A directly connected zwitterions reported previously (in ωB97xD methodology, Reichardt's: β = 257.2 × 10−30 esu and Brooker's: β = 67.2 × 10−30 esu), respective p-phenylene-bridged zwitterions showed five to eight times enhanced hyperpolarizabilities. This report highlights the better efficiencies of Reichardt's metamer over Brooker's metamer and aromatically bridged over the directly connected zwitterions. Current findings may be helpful in the designing of efficient functional molecular chromophores, and aromatic bridge combined with zwitterions can be solutions to nonlinear transparency trade-off problem.

本文报告了基于对苯基桥接的吡啶鎓(受体)-二氰基甲烷鎓(供体)齐聚物的计算研究结果。研究发现,Reichardt 元胞是扭曲的,而 Brooker 元胞接近平面构象。自然键轨道(NBO)分析表明,介构共振有助于 Brooker 元共聚物,但对 Reichardt 元共聚物没有帮助。为了评估元共聚和芳香桥的影响,我们分析了这两种分子的基本分子性质,如偶极矩(μ)、极化率(α)、超极化率(β)和绝热吸收,然后将它们与没有任何桥的对应齐聚物(以前曾有报道)进行直接比较。元胞作用的影响结果:Reichardt 元聚体的超极化能力(ωB97xD: β = 1577.1 × 10-30 esu)比 Brooker 元聚体(ωB97xD: β = 532.5 × 10-30 esu)高出约三倍。对苯桥的影响:与之前报道的各自的 D-A 直接连接的三元共轭物相比(在 ωB97xD 方法中,Reichardt 的:β = 257.2 × 10-30 esu,Brooker 的:β = 67.2 × 10-30 esu),各自的对苯桥接三元共轭物的超极化能力提高了五到八倍。该报告强调了 Reichardt 元聚合体比 Brooker 元聚合体以及芳香桥接齐聚物比直接连接齐聚物的效率更高。目前的发现可能有助于设计高效的功能分子发色团,芳香桥与齐聚物的结合可以解决非线性透明度权衡问题。
{"title":"Enhanced Hyperpolarizabilities Through p-Phenylene Bridges: Computational Studies on Metamerism and Functional Molecular Properties of Pyridinium–Dicyanomethanide-Based Zwitterions","authors":"Sanyasi Sitha","doi":"10.1002/poc.4657","DOIUrl":"10.1002/poc.4657","url":null,"abstract":"<p>Para-phenylene-bridged pyridinium (acceptor)–dicyanomethanide (donor)-based zwitterions were computationally investigated and are reported here. Reichardt's metamer was found to be twisted and Brooker's metamer in near-planar conformation. Natural bond orbital (NBO) analysis showed that mesomeric resonance is helping Brooker's metamer but found to be not helpful for Reichardt's metamer. To assess the impacts of metamerism and aromatic bridges, fundamental molecular properties like dipole moments (μ), polarizabilities (<i>α</i>), hyperpolarizabilities (<i>β</i>), and adiabatic absorptions of these two molecules were analyzed and then directly compared with their counterpart zwitterions without any bridges (<i>previously reported</i>). Results of impact of metamerism: Reichardt's metamer showed around <i>three times enhanced</i> hyperpolarizabilities (ωB97xD: <i>β</i> = 1577.1 × 10<sup>−30</sup> esu) than the Brooker's metamer (ωB97xD: <i>β</i> = 532.5 × 10<sup>−30</sup> esu). Impacts of <i>p</i>-phenylene bridges: Compared to their respective D–A directly connected zwitterions reported previously (in ωB97xD methodology, Reichardt's: <i>β</i> = 257.2 × 10<sup>−30</sup> esu and Brooker's: <i>β</i> = 67.2 × 10<sup>−30</sup> esu), respective <i>p</i>-phenylene-bridged zwitterions showed <i>five to eight times enhanced</i> hyperpolarizabilities. This report highlights the better efficiencies of Reichardt's metamer over Brooker's metamer and aromatically bridged over the directly connected zwitterions. Current findings may be helpful in the designing of efficient functional molecular chromophores, and aromatic bridge combined with zwitterions can be solutions to nonlinear transparency trade-off problem.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Memoriam: The Life and Scientific Accomplishments of Frank A. L. Anet (1926–2024) 悼念弗兰克-阿奈特(1926-2024)的生平与科学成就
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-08-26 DOI: 10.1002/poc.4656
Darón I. Freedberg, Nicholas V. Hud, Max Kopelevich, Daniel J. O'Leary, Jane Strouse

A memorial tribute detailing the life and scientific accomplishments of Frank A. L. Anet, a pioneer of nuclear magnetic resonance (NMR) spectroscopy who discovered bedrock principles in organic chemistry and magnetic resonance. He was the first to show that nuclear Overhauser effects could provide structural information, significantly impacting future NMR applications. In the 1960s and 1970s, he built entire multinuclear NMR spectrometers operating as high as 396 MHz for protons, detecting nuclei inaccessible to commercial instruments, and operating at very low temperatures for studying molecular structure and dynamics. A titan of physical organic chemistry, Frank made important contributions in the areas of conformational analysis, stereochemistry, isotope effects, NMR relaxation theory, and chemical origins of life.

弗兰克-阿奈特是核磁共振 (NMR) 光谱学的先驱,他发现了有机化学和磁共振的基本原理,这本纪念册详细介绍了他的生平和科学成就。他是第一个证明核奥弗霍塞尔效应可以提供结构信息的人,对未来的核磁共振应用产生了重大影响。20 世纪 60 年代和 70 年代,他建造了整个多核 NMR 光谱仪,质子的工作频率高达 396 兆赫,可探测商用仪器无法探测到的原子核,并可在极低的温度下工作,用于研究分子结构和动力学。作为物理有机化学的泰斗,弗兰克在构象分析、立体化学、同位素效应、核磁共振弛豫理论和生命的化学起源等领域做出了重要贡献。
{"title":"In Memoriam: The Life and Scientific Accomplishments of Frank A. L. Anet (1926–2024)","authors":"Darón I. Freedberg,&nbsp;Nicholas V. Hud,&nbsp;Max Kopelevich,&nbsp;Daniel J. O'Leary,&nbsp;Jane Strouse","doi":"10.1002/poc.4656","DOIUrl":"10.1002/poc.4656","url":null,"abstract":"<p>A memorial tribute detailing the life and scientific accomplishments of Frank A. L. Anet, a pioneer of nuclear magnetic resonance (NMR) spectroscopy who discovered bedrock principles in organic chemistry and magnetic resonance. He was the first to show that nuclear Overhauser effects could provide structural information, significantly impacting future NMR applications. In the 1960s and 1970s, he built entire multinuclear NMR spectrometers operating as high as 396 MHz for protons, detecting nuclei inaccessible to commercial instruments, and operating at very low temperatures for studying molecular structure and dynamics. A titan of physical organic chemistry, Frank made important contributions in the areas of conformational analysis, stereochemistry, isotope effects, NMR relaxation theory, and chemical origins of life.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4656","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Conformational Preferences in XC(W)ZY Molecules With X, Y = F, Cl, Br and W, Z = O, S, Se: Unraveling the Influence of Conjugative and Anomeric Interactions 探索 XC(W)ZY 分子中的构象偏好,其中 X、Y = F、Cl、Br 和 W、Z = O、S、Se:揭示共轭和同分异构相互作用的影响
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-08-12 DOI: 10.1002/poc.4654
Michelle T. Custodio Castro, Carlos O. Della Védova, Rosana M. Romano

The relative stabilities of the syn- and anti-conformers of 72 molecules belonging to the XC(W)ZY type, with X, Y = F, Cl, Br and W, Z = O, S, Se, have been computed using the B3LYP/aug-cc-pVDZ approximation. The conformational preferences, represented by the energy differences between the two rotamers, exhibit a systematic trend in relation to both the halogen atoms and the chalcogen atoms. These computational predictions are in agreement with available experimental results. The NBO formalism was employed to assess the influence of both the conjugative and anomeric interactions on the relative energy of the conformers. It has been determined that the conjugative interaction provides a satisfactory explanation for the energy differences between rotamers. In contrast, the anomeric interactions favors the syn-conformation in all cases. The relative stabilities between XC(W)ZY/YC(W)ZX and XC(W)ZY/XC(Z)WY constitutional isomers have also been computed and correlated with the experimental data.

采用 B3LYP/aug-cc-pVDZ 近似方法计算了 72 个 XC(W)ZY 型分子(X、Y = F、Cl、Br 和 W、Z = O、S、Se)的同构型和反构型的相对稳定性。由两个旋转体之间的能量差异所代表的构象优选性与卤素原子和查尔根原子的关系呈现出一种系统的趋势。这些计算预测与现有的实验结果一致。我们采用 NBO 形式来评估共轭作用和同分异构作用对构象相对能量的影响。结果表明,共轭作用可以令人满意地解释转构体之间的能量差异。相比之下,同分异构作用在所有情况下都有利于合成构象。此外,还计算了 XC(W)ZY/YC(W)ZX 和 XC(W)ZY/XC(Z)WY 构象异构体之间的相对稳定性,并将其与实验数据进行了关联。
{"title":"Exploring Conformational Preferences in XC(W)ZY Molecules With X, Y = F, Cl, Br and W, Z = O, S, Se: Unraveling the Influence of Conjugative and Anomeric Interactions","authors":"Michelle T. Custodio Castro,&nbsp;Carlos O. Della Védova,&nbsp;Rosana M. Romano","doi":"10.1002/poc.4654","DOIUrl":"10.1002/poc.4654","url":null,"abstract":"<div>\u0000 \u0000 <p>The relative stabilities of the <i>syn</i>- and <i>anti</i>-conformers of 72 molecules belonging to the XC(W)ZY type, with X, Y = F, Cl, Br and W, Z = O, S, Se, have been computed using the B3LYP/aug-cc-pVDZ approximation. The conformational preferences, represented by the energy differences between the two rotamers, exhibit a systematic trend in relation to both the halogen atoms and the chalcogen atoms. These computational predictions are in agreement with available experimental results. The NBO formalism was employed to assess the influence of both the conjugative and anomeric interactions on the relative energy of the conformers. It has been determined that the conjugative interaction provides a satisfactory explanation for the energy differences between rotamers. In contrast, the anomeric interactions favors the <i>syn</i>-conformation in all cases. The relative stabilities between XC(W)ZY/YC(W)ZX and XC(W)ZY/XC(Z)WY constitutional isomers have also been computed and correlated with the experimental data.</p>\u0000 </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 11","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Trifunctional Intramolecular Frustrated Lewis Pair Derived From Aminoboronic Acid for Converting CO2 Into Valuable Chemicals 由氨基硼酸衍生的新型三官能团分子内受托路易斯对,可将二氧化碳转化为有价值的化学品
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-08-12 DOI: 10.1002/poc.4655
Mohmmad Faizan, Guntupalli Santhosh, Madhumita Chakraborty, Ravinder Pawar

The conversion of CO2 into valuable chemicals remains a significant challenge for achieving environmental sustainability, primarily due to the stability of the CO2 molecule. This necessitates the development of efficient and ecofriendly catalysts. In recent years, frustrated Lewis pairs (FLPs) have shown promise for CO2 utilization. In this study, we introduce α-aminodiboronic acid (DBA), a novel trifunctional aminoboronic acid, as an intramolecular FLP for converting CO2 into cyclic carbonate and formic acid. Using density functional theory (DFT) calculations, we explored the reaction mechanism and investigated DBA's electronic structure through molecular electrostatic potential surface (MESP) and natural bond orbital (NBO) analyses. Our results reveal that one −B (OH)2 group induces an unusual state of frustration in the molecule due to charge transfer from the nitrogen atom's lone pair to the π* orbitals, enhancing catalytic performance. The additional −B (OH)2 group serves as an anchoring site for reactive species. The epoxide activation energy is reduced by approximately 27 kcal/mol compared to the uncatalyzed reaction, and the reduction of CO2 occurs with a requirement of 26 kcal/mol. The additional −B (OH)2 plays a crucial role in the catalytic mechanism and minimizes the energies of various structures observed in the reaction path. The reaction energetics align with structural analysis observations, marking this study as the first report on single-molecule trifunctional FLPs for transforming CO2 into valuable chemicals.

主要由于二氧化碳分子的稳定性,将二氧化碳转化为有价值的化学品仍然是实现环境可持续性的重大挑战。这就需要开发高效、环保的催化剂。近年来,受挫路易斯对(FLPs)在二氧化碳利用方面显示出了前景。在本研究中,我们引入了α-氨基二硼酸(DBA)--一种新型的三官能氨基硼酸--作为分子内 FLP,用于将 CO2 转化为环碳酸盐和甲酸。利用密度泛函理论(DFT)计算,我们探索了反应机理,并通过分子静电位面(MESP)和天然键轨道(NBO)分析研究了 DBA 的电子结构。我们的研究结果表明,由于电荷从氮原子的孤对向π*轨道转移,一个-B (OH)2基团在分子中引起了一种不寻常的沮度状态,从而提高了催化性能。附加的 -B (OH)2 基团可作为反应物的锚定位点。与未催化反应相比,环氧化物的活化能降低了约 27 kcal/mol,而 CO2 的还原只需要 26 kcal/mol。附加的 -B (OH)2 在催化机理中起着关键作用,并使反应路径中观察到的各种结构的能量最小化。反应能量与结构分析观测结果一致,这标志着这项研究首次报道了将 CO2 转化为有价值化学品的单分子三功能 FLPs。
{"title":"Novel Trifunctional Intramolecular Frustrated Lewis Pair Derived From Aminoboronic Acid for Converting CO2 Into Valuable Chemicals","authors":"Mohmmad Faizan,&nbsp;Guntupalli Santhosh,&nbsp;Madhumita Chakraborty,&nbsp;Ravinder Pawar","doi":"10.1002/poc.4655","DOIUrl":"10.1002/poc.4655","url":null,"abstract":"<div>\u0000 \u0000 <p>The conversion of CO<sub>2</sub> into valuable chemicals remains a significant challenge for achieving environmental sustainability, primarily due to the stability of the CO<sub>2</sub> molecule. This necessitates the development of efficient and ecofriendly catalysts. In recent years, frustrated Lewis pairs (FLPs) have shown promise for CO<sub>2</sub> utilization. In this study, we introduce α-aminodiboronic acid (DBA), a novel trifunctional aminoboronic acid, as an intramolecular FLP for converting CO<sub>2</sub> into cyclic carbonate and formic acid. Using density functional theory (DFT) calculations, we explored the reaction mechanism and investigated DBA's electronic structure through molecular electrostatic potential surface (MESP) and natural bond orbital (NBO) analyses. Our results reveal that one −B (OH)<sub>2</sub> group induces an unusual state of frustration in the molecule due to charge transfer from the nitrogen atom's lone pair to the π* orbitals, enhancing catalytic performance. The additional −B (OH)<sub>2</sub> group serves as an anchoring site for reactive species. The epoxide activation energy is reduced by approximately 27 kcal/mol compared to the uncatalyzed reaction, and the reduction of CO<sub>2</sub> occurs with a requirement of 26 kcal/mol. The additional −B (OH)<sub>2</sub> plays a crucial role in the catalytic mechanism and minimizes the energies of various structures observed in the reaction path. The reaction energetics align with structural analysis observations, marking this study as the first report on single-molecule trifunctional FLPs for transforming CO<sub>2</sub> into valuable chemicals.</p>\u0000 </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 11","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical investigations on N2H5N5/PDO cocrystal via a first-principles study 通过第一原理研究对 N2H5N5/PDO 共晶体进行理论探索
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-08-11 DOI: 10.1002/poc.4653
Zhipeng Chen, Junqi Wang, Qingshan Xie, Chen Yang, Changlin Zhou

The exploration of cyclo-N5ˉ-based energetic cocrystals represents a noteworthy avenue within pentazolate chemistry, focusing on leveraging cocrystallization to enhance stability. Recently, a novel cocrystal explosive, N2H5N5/PDO, was developed by combining N2H5N5 with pyrazine 1,4-dioxide (PDO), exhibiting promising detonation characteristics and reduced sensitivity. This study endeavors to elucidate how the structure and noncovalent interactions impact the performance of N2H5N5/PDO through a first-principles investigation. The results indicate that the enhanced hydrogen bonding and wave-like crystal packing structure within the cocrystal effectively bolster its stability compared to N2H5N5. The N···H and O···H interactions, in conjunction with π–π interactions, emerge as critical elements driving cocrystal formation. Compared to the pure N2H5N5, the detonation performance of the cocrystal exhibits a slight decline, albeit with a noticeable reduction in sensitivity.

对基于环 N5ˉ的高能共晶体的探索是五氮杂环化学中一个值得关注的领域,其重点是利用共晶化提高稳定性。最近,通过将 N2H5N5 与 1,4-二氧化吡嗪(PDO)结合,开发出一种新型共晶炸药 N2H5N5/PDO,显示出良好的引爆特性并降低了灵敏度。本研究试图通过第一原理研究,阐明结构和非共价相互作用如何影响 N2H5N5/PDO 的性能。结果表明,与 N2H5N5 相比,共晶体内增强的氢键和波状晶体堆积结构有效地提高了其稳定性。N--H和O--H相互作用以及π-π相互作用是驱动共晶体形成的关键因素。与纯 N2H5N5 相比,共晶体的引爆性能略有下降,但灵敏度明显降低。
{"title":"Theoretical investigations on N2H5N5/PDO cocrystal via a first-principles study","authors":"Zhipeng Chen,&nbsp;Junqi Wang,&nbsp;Qingshan Xie,&nbsp;Chen Yang,&nbsp;Changlin Zhou","doi":"10.1002/poc.4653","DOIUrl":"10.1002/poc.4653","url":null,"abstract":"<p>The exploration of <i>cyclo</i>-N<sub>5</sub>ˉ-based energetic cocrystals represents a noteworthy avenue within pentazolate chemistry, focusing on leveraging cocrystallization to enhance stability. Recently, a novel cocrystal explosive, N<sub>2</sub>H<sub>5</sub>N<sub>5</sub>/PDO, was developed by combining N<sub>2</sub>H<sub>5</sub>N<sub>5</sub> with pyrazine 1,4-dioxide (PDO), exhibiting promising detonation characteristics and reduced sensitivity. This study endeavors to elucidate how the structure and noncovalent interactions impact the performance of N<sub>2</sub>H<sub>5</sub>N<sub>5</sub>/PDO through a first-principles investigation. The results indicate that the enhanced hydrogen bonding and wave-like crystal packing structure within the cocrystal effectively bolster its stability compared to N<sub>2</sub>H<sub>5</sub>N<sub>5</sub>. The N···H and O···H interactions, in conjunction with π–π interactions, emerge as critical elements driving cocrystal formation. Compared to the pure N<sub>2</sub>H<sub>5</sub>N<sub>5</sub>, the detonation performance of the cocrystal exhibits a slight decline, albeit with a noticeable reduction in sensitivity.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 11","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Torsional influences on cross‐conjugated thieno[3,4‐b]thiophene photochromes 扭转对交叉共轭噻吩并[3,4-b]噻吩光色团的影响
IF 1.8 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-08-01 DOI: 10.1002/poc.4650
Nicholas P. Adams, John D. Tovar
Photoresponsive conjugated polymers are a promising target for modern organic electronics. Numerous photoswitchable repeat units have been included covalently within polymeric structures to enable responsive chromic materials, most commonly through side‐chain appendages or through formal conjugation along a π‐conjugated backbone. We recently disclosed a new design whereby the photoswitch elements are cross conjugated to a conjugated polymer main chain. In this case, we found that the extent of photoconversion was dictated in part by competitive main chain light absorption, which could be suppressed by using a photoswitching motif that carried most of the frontier molecular orbital densities. Here, we report the modeling and synthesis of a series of thieno[3,4‐b]thiophene (TT)‐based photochromes with various aromatic flankers imparting varying degrees of steric bulk and π‐conjugation in order to elucidate the balancing act between steric and electronic factors to promote photochromism. These model systems provide a better understanding of the behavior of photochromic units within extended oligomeric and polymeric π‐conjugated materials.
光致共振共轭聚合物是现代有机电子学的一个前景广阔的目标。人们在聚合物结构中以共价方式加入了许多光开关重复单元,以实现响应性色材料,最常见的方式是通过侧链附属物或沿着 π 共轭主链进行正式共轭。我们最近披露了一种新设计,即光电开关元件与共轭聚合物主链交叉共轭。在这种情况下,我们发现光电转换的程度部分取决于主链的竞争性光吸收,而通过使用携带大部分前沿分子轨道密度的光开关图案,可以抑制这种竞争性光吸收。在此,我们报告了一系列基于噻吩并[3,4-b]噻吩(TT)的光致变色剂的建模和合成,这些光致变色剂具有不同的芳香侧翼,赋予了不同程度的立体体积和π-共轭,从而阐明了立体因素和电子因素之间的平衡作用,以促进光致变色。通过这些模型系统,我们可以更好地了解扩展低聚物和聚合物 π 共轭材料中光致变色单元的行为。
{"title":"Torsional influences on cross‐conjugated thieno[3,4‐b]thiophene photochromes","authors":"Nicholas P. Adams, John D. Tovar","doi":"10.1002/poc.4650","DOIUrl":"https://doi.org/10.1002/poc.4650","url":null,"abstract":"Photoresponsive conjugated polymers are a promising target for modern organic electronics. Numerous photoswitchable repeat units have been included covalently within polymeric structures to enable responsive chromic materials, most commonly through side‐chain appendages or through formal conjugation along a π‐conjugated backbone. We recently disclosed a new design whereby the photoswitch elements are cross conjugated to a conjugated polymer main chain. In this case, we found that the extent of photoconversion was dictated in part by competitive main chain light absorption, which could be suppressed by using a photoswitching motif that carried most of the frontier molecular orbital densities. Here, we report the modeling and synthesis of a series of thieno[3,4‐<jats:italic>b</jats:italic>]thiophene (TT)‐based photochromes with various aromatic flankers imparting varying degrees of steric bulk and π‐conjugation in order to elucidate the balancing act between steric and electronic factors to promote photochromism. These model systems provide a better understanding of the behavior of photochromic units within extended oligomeric and polymeric π‐conjugated materials.","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical study of atomic electronegativity effects on the excited-state behavior of fluorescent compounds of citrinin 原子电负性对柠檬素荧光化合物激发态行为影响的理论研究
IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Pub Date : 2024-07-23 DOI: 10.1002/poc.4651
Yue Gao, Meiheng Lv, Zexu Cai, Yuhang Zhang, Tingting Wang, Jianyong Liu, Fangjian Shang, Wenze Li

The present work focuses on the light-induced behavior of citrinin derivatives in relation to atomic electronegativity. A detailed theoretical study on the photophysical properties and excited-state behavior of fluorescent compounds of citrinin (Cit-O, Cit-S, and Cit-Se, with different atomic electronegativity) has been conducted, and the effect of electronegativity on the proton transfer in this system has been explained. First, the relevant hydrogen bond parameters and infrared vibrational spectra of the optimized geometrical configurations have been insightfully investigated. It is elucidated that the hydrogen bond is strengthened after photoexcitation, and it provides a driving force for excited-state intramolecular proton transfer (ESIPT). In addition, the frontier molecular orbitals were analyzed, and the intramolecular charge transfer process in all Cit systems, the phenomenon of charge redistribution, facilitates the ESIPT reaction. By constructing potential energy surfaces for different transfer paths, the atomic electronegativity impact on the ESIPT dynamical behavior of the Cit system was determined. This work clarifies the mechanism of the intramolecular proton transfer process in the excited state of citrinin molecules and complements the theoretical study of the atomic electronegativity-regulated citrinin system, which provides a corresponding theoretical basis for the design and synthesis of new luminescence-adjustable citrinin systems.

本研究的重点是枸橼苷衍生物的光诱导行为与原子电负性的关系。研究人员对不同原子电负性的柠苦素荧光化合物(Cit-O、Cit-S 和 Cit-Se)的光物理性质和激发态行为进行了详细的理论研究,并解释了电负性对该体系中质子传递的影响。首先,深入研究了优化几何构型的相关氢键参数和红外振动光谱。结果表明,氢键在光激发后得到了加强,并为激发态分子内质子转移(ESIPT)提供了驱动力。此外,还分析了前沿分子轨道,所有 Cit 体系中的分子内电荷转移过程,即电荷再分布现象,促进了 ESIPT 反应。通过构建不同转移路径的势能面,确定了原子电负性对 Cit 体系 ESIPT 动力行为的影响。这项工作阐明了柠蛋白分子激发态分子内质子转移过程的机理,补充了原子电负性调控柠蛋白体系的理论研究,为设计和合成新的发光可调柠蛋白体系提供了相应的理论基础。
{"title":"Theoretical study of atomic electronegativity effects on the excited-state behavior of fluorescent compounds of citrinin","authors":"Yue Gao,&nbsp;Meiheng Lv,&nbsp;Zexu Cai,&nbsp;Yuhang Zhang,&nbsp;Tingting Wang,&nbsp;Jianyong Liu,&nbsp;Fangjian Shang,&nbsp;Wenze Li","doi":"10.1002/poc.4651","DOIUrl":"10.1002/poc.4651","url":null,"abstract":"<p>The present work focuses on the light-induced behavior of citrinin derivatives in relation to atomic electronegativity. A detailed theoretical study on the photophysical properties and excited-state behavior of fluorescent compounds of citrinin (Cit-O, Cit-S, and Cit-Se, with different atomic electronegativity) has been conducted, and the effect of electronegativity on the proton transfer in this system has been explained. First, the relevant hydrogen bond parameters and infrared vibrational spectra of the optimized geometrical configurations have been insightfully investigated. It is elucidated that the hydrogen bond is strengthened after photoexcitation, and it provides a driving force for excited-state intramolecular proton transfer (ESIPT). In addition, the frontier molecular orbitals were analyzed, and the intramolecular charge transfer process in all Cit systems, the phenomenon of charge redistribution, facilitates the ESIPT reaction. By constructing potential energy surfaces for different transfer paths, the atomic electronegativity impact on the ESIPT dynamical behavior of the Cit system was determined. This work clarifies the mechanism of the intramolecular proton transfer process in the excited state of citrinin molecules and complements the theoretical study of the atomic electronegativity-regulated citrinin system, which provides a corresponding theoretical basis for the design and synthesis of new luminescence-adjustable citrinin systems.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 11","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physical Organic Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1