Age-depth model for uppermost Ndutu Beds constrains Middle Stone Age technology and climate-induced paleoenvironmental changes at Olduvai Gorge (Tanzania)
Rachel K. Smedley , Kaja Fenn , Ian G. Stanistreet , Harald Stollhofen , Jackson K. Njau , Kathy Schick , Nicholas Toth
{"title":"Age-depth model for uppermost Ndutu Beds constrains Middle Stone Age technology and climate-induced paleoenvironmental changes at Olduvai Gorge (Tanzania)","authors":"Rachel K. Smedley , Kaja Fenn , Ian G. Stanistreet , Harald Stollhofen , Jackson K. Njau , Kathy Schick , Nicholas Toth","doi":"10.1016/j.jhevol.2023.103465","DOIUrl":null,"url":null,"abstract":"<div><p>Olduvai Gorge in northern Tanzania is part of a globally important archeological and paleoanthropological World Heritage Site location critical to our understanding of modern human evolution. The Ndutu Beds in the upper part of the geological sequence at Olduvai Gorge represent the oldest unit to yield modern <em>Homo sapiens</em> skeletal material and Middle Stone Age technology. However, the timing of the deposition of the Ndutu Beds is poorly constrained at present, which limits our understanding of the paleoenvironments critical for contextualizing <em>H</em>. <em>sapiens</em> and related technologies in the Olduvai Basin. Using a suite of 15 luminescence ages of sedimentary core samples, combined with Bayesian statistics, this study provides a new higher-resolution age-depth model for the deposition of the uppermost Upper Ndutu and Naisiuiu Beds cored by the Olduvai Gorge Coring Project. The luminescence and modeled ages are presented as ±1 σ uncertainties. The Ndutu Beds intersected by the Olduvai Gorge Coring Project cores are dated to between 117.1 ± 17.9 and 45.3 ± 4.2 ka (between 125.9 ± 26.5 and 45.8 ± 8.2 ka modeled ages), while a probable overlying layer of Naisiusiu Beds dates to 23.7 ± 10.9 to 12.1 ± 1.7 ka (25.7 ± 18.9 ka and 12.0 ± 3.4 ka modeled age). Time-averaged accretion rates are derived during this time: (1) initially low rates (<5 cm ka<sup>−1</sup>) from the bottom of the core at 117.1 ± 17.9 ka up to 95.3 ± 11.1 ka (125.9 ± 26.5 to 95.5 ± 23.3 ka modeled ages); (2) the middle section spanning between 95.3 ± 11.1 and 62.7 ± 5.7 ka (95.5 ± 23.3 to 61.9 ± 10.4 ka modeled ages) with mean rates above 15 cm ka<sup>−1</sup>; and (3) the last 62.7 ± 5.7 ka (61.9 ± 10.4 ka modeled age) where the accretion rate reduces to below 5 cm ka<sup>−1</sup>. This reduction can be explained by the evolution of the gorge system that was likely driven by subsidence of the Olbalbal depression and changes in climate, particularly precipitation and resulting lake and base level changes. Older Upper Ndutu and Lower Ndutu Beds are contained within proto-gorges within the modern gorge system.</p></div>","PeriodicalId":54805,"journal":{"name":"Journal of Human Evolution","volume":"186 ","pages":"Article 103465"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047248423001446/pdfft?md5=404b2e5ce066fbfcf3ceaa9b117c08f0&pid=1-s2.0-S0047248423001446-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Evolution","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047248423001446","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Olduvai Gorge in northern Tanzania is part of a globally important archeological and paleoanthropological World Heritage Site location critical to our understanding of modern human evolution. The Ndutu Beds in the upper part of the geological sequence at Olduvai Gorge represent the oldest unit to yield modern Homo sapiens skeletal material and Middle Stone Age technology. However, the timing of the deposition of the Ndutu Beds is poorly constrained at present, which limits our understanding of the paleoenvironments critical for contextualizing H. sapiens and related technologies in the Olduvai Basin. Using a suite of 15 luminescence ages of sedimentary core samples, combined with Bayesian statistics, this study provides a new higher-resolution age-depth model for the deposition of the uppermost Upper Ndutu and Naisiuiu Beds cored by the Olduvai Gorge Coring Project. The luminescence and modeled ages are presented as ±1 σ uncertainties. The Ndutu Beds intersected by the Olduvai Gorge Coring Project cores are dated to between 117.1 ± 17.9 and 45.3 ± 4.2 ka (between 125.9 ± 26.5 and 45.8 ± 8.2 ka modeled ages), while a probable overlying layer of Naisiusiu Beds dates to 23.7 ± 10.9 to 12.1 ± 1.7 ka (25.7 ± 18.9 ka and 12.0 ± 3.4 ka modeled age). Time-averaged accretion rates are derived during this time: (1) initially low rates (<5 cm ka−1) from the bottom of the core at 117.1 ± 17.9 ka up to 95.3 ± 11.1 ka (125.9 ± 26.5 to 95.5 ± 23.3 ka modeled ages); (2) the middle section spanning between 95.3 ± 11.1 and 62.7 ± 5.7 ka (95.5 ± 23.3 to 61.9 ± 10.4 ka modeled ages) with mean rates above 15 cm ka−1; and (3) the last 62.7 ± 5.7 ka (61.9 ± 10.4 ka modeled age) where the accretion rate reduces to below 5 cm ka−1. This reduction can be explained by the evolution of the gorge system that was likely driven by subsidence of the Olbalbal depression and changes in climate, particularly precipitation and resulting lake and base level changes. Older Upper Ndutu and Lower Ndutu Beds are contained within proto-gorges within the modern gorge system.
期刊介绍:
The Journal of Human Evolution concentrates on publishing the highest quality papers covering all aspects of human evolution. The central focus is aimed jointly at paleoanthropological work, covering human and primate fossils, and at comparative studies of living species, including both morphological and molecular evidence. These include descriptions of new discoveries, interpretative analyses of new and previously described material, and assessments of the phylogeny and paleobiology of primate species. Submissions should address issues and questions of broad interest in paleoanthropology.