Active Learning and Transfer Learning for Document Segmentation

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Programming and Computer Software Pub Date : 2023-12-07 DOI:10.1134/s0361768823070046
D. M. Kiranov, M. A. Ryndin, I. S. Kozlov
{"title":"Active Learning and Transfer Learning for Document Segmentation","authors":"D. M. Kiranov, M. A. Ryndin, I. S. Kozlov","doi":"10.1134/s0361768823070046","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we investigate the effectiveness of classical approaches to active learning in the problem of document segmentation with the aim of reducing the size of the training sample. A modified approach to selection of document images for labeling and subsequent model training is presented. The results of active learning are compared to those of transfer learning on fully labeled data. The paper also investigates how the problem domain of a training set, on which a model is initialized for transfer learning, affects the subsequent uptraining of the model.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768823070046","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate the effectiveness of classical approaches to active learning in the problem of document segmentation with the aim of reducing the size of the training sample. A modified approach to selection of document images for labeling and subsequent model training is presented. The results of active learning are compared to those of transfer learning on fully labeled data. The paper also investigates how the problem domain of a training set, on which a model is initialized for transfer learning, affects the subsequent uptraining of the model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文档分割的主动学习和迁移学习
摘要 在本文中,我们研究了主动学习的经典方法在文档分割问题中的有效性,目的是减少训练样本的大小。本文介绍了一种改进的方法,用于选择文档图像进行标记和随后的模型训练。将主动学习的结果与在完全标记数据上进行迁移学习的结果进行了比较。论文还研究了用于迁移学习的模型初始化的训练集的问题域如何影响模型的后续向上训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Programming and Computer Software
Programming and Computer Software 工程技术-计算机:软件工程
CiteScore
1.60
自引率
28.60%
发文量
35
审稿时长
>12 weeks
期刊介绍: Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.
期刊最新文献
Comparative Efficiency Analysis of Hashing Algorithms for Use in zk-SNARK Circuits in Distributed Ledgers Constructing the Internal Voronoi Diagram of Polygonal Figure Using the Sweepline Method RuGECToR: Rule-Based Neural Network Model for Russian Language Grammatical Error Correction Secure Messaging Application Development: Based on Post-Quantum Algorithms CSIDH, Falcon, and AES Symmetric Key Cryptosystem Analytical Review of Confidential Artificial Intelligence: Methods and Algorithms for Deployment in Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1