Light-enhanced osmotic energy generation with an aramid nanofiber membrane

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2023-12-08 DOI:10.1038/s41427-023-00507-7
Cheng Chen, Yunxiao Lin, Weiwei Lei, Guoliang Yang, Yuchen Liu, Mao Xu, Xinhao Li, Dan Liu
{"title":"Light-enhanced osmotic energy generation with an aramid nanofiber membrane","authors":"Cheng Chen, Yunxiao Lin, Weiwei Lei, Guoliang Yang, Yuchen Liu, Mao Xu, Xinhao Li, Dan Liu","doi":"10.1038/s41427-023-00507-7","DOIUrl":null,"url":null,"abstract":"<p>Osmotic energy generation with reverse electrodialysis through membranes provides a worldwide free energy resource. Photo-driven proton transport in photosynthesis supplies basal energy for plants and living organisms on the planet. Here, we utilized aramid nanofiber (ANF) semiconductor-based membranes to enable light-driven proton transport for osmotic energy generation. Under unilateral illumination, the light-driven proton transport system converted light energy into electrical energy and showed wavelength- and intensity-dependent transmembrane potentials and currents. Interestingly, the synergistic effects of simultaneous illumination and pressure provided a five-fold increase in the voltage and a three-fold increase in the current relative to pressure alone. Density functional theory calculations and spectroscopic measurements demonstrated that the ANF and photoinduced electrons enabled proton transport during illumination and generated a transmembrane potential and current. The light-driven proton transport system supports the development of devices with flexible and stable ANF membranes.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-023-00507-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Osmotic energy generation with reverse electrodialysis through membranes provides a worldwide free energy resource. Photo-driven proton transport in photosynthesis supplies basal energy for plants and living organisms on the planet. Here, we utilized aramid nanofiber (ANF) semiconductor-based membranes to enable light-driven proton transport for osmotic energy generation. Under unilateral illumination, the light-driven proton transport system converted light energy into electrical energy and showed wavelength- and intensity-dependent transmembrane potentials and currents. Interestingly, the synergistic effects of simultaneous illumination and pressure provided a five-fold increase in the voltage and a three-fold increase in the current relative to pressure alone. Density functional theory calculations and spectroscopic measurements demonstrated that the ANF and photoinduced electrons enabled proton transport during illumination and generated a transmembrane potential and current. The light-driven proton transport system supports the development of devices with flexible and stable ANF membranes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用芳纶纳米纤维膜进行光增强渗透发电
通过膜反向电渗析产生的渗透能为全球提供了免费的能源资源。光合作用中的光驱动质子传输为地球上的植物和生物提供基础能源。在这里,我们利用芳纶纳米纤维(ANF)半导体膜实现了光驱动质子传输以产生渗透能。在单侧光照下,光驱动质子传输系统将光能转化为电能,并显示出与波长和强度相关的跨膜电位和电流。有趣的是,在同时光照和压力的协同作用下,电压增加了五倍,电流增加了三倍。密度泛函理论计算和光谱测量表明,ANF 和光诱导电子在光照期间促成了质子转运,并产生了跨膜电位和电流。光驱动质子传输系统有助于开发具有灵活稳定的 ANF 膜的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Unprecedented mechanical wave energy absorption observed in multifunctional bioinspired architected metamaterials Vortex confinement through an unquantized magnetic flux Lithium-ion battery recycling—a review of the material supply and policy infrastructure Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12 High tolerance of the superconducting current to large grain boundary angles in potassium-doped BaFe2As2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1