One Pot Photomediated Formation of Electrically Conductive Hydrogels

IF 4.7 Q1 POLYMER SCIENCE ACS polymers Au Pub Date : 2023-12-08 DOI:10.1021/acspolymersau.3c00031
Dan My Nguyen, Chun-Yuan Lo, Tianzheng Guo, Taewook Choi, Shalini Sundar, Zachary Swain, Yuhang Wu, Charles Dhong and Laure V. Kayser*, 
{"title":"One Pot Photomediated Formation of Electrically Conductive Hydrogels","authors":"Dan My Nguyen,&nbsp;Chun-Yuan Lo,&nbsp;Tianzheng Guo,&nbsp;Taewook Choi,&nbsp;Shalini Sundar,&nbsp;Zachary Swain,&nbsp;Yuhang Wu,&nbsp;Charles Dhong and Laure V. Kayser*,&nbsp;","doi":"10.1021/acspolymersau.3c00031","DOIUrl":null,"url":null,"abstract":"<p >Electrically conductive hydrogels represent an innovative platform for the development of bioelectronic devices. While photolithography technologies have enabled the fabrication of complex architectures with high resolution, photoprinting conductive hydrogels is still a challenging task because the conductive polymer absorbs light which can outcompete photopolymerization of the insulating scaffold. In this study, we introduce an approach to synthesizing conductive hydrogels in one step. Our approach combines the simultaneous photo-cross-linking of a polymeric scaffold and the polymerization of 3,4-ethylene dioxythiophene (EDOT), without additional photocatalysts. This process involves the copolymerization of photo-cross-linkable coumarin-containing monomers with sodium styrenesulfonate to produce a water-soluble poly(styrenesulfonate-<i>co</i>-coumarin acrylate) (P(SS-<i>co</i>-CoumAc)) copolymer. Our findings reveal that optimizing the [SS]:[CoumAc] ratio at 100:5 results in hydrogels with the strain at break up to 16%. This mechanical resilience is coupled with an electronic conductivity of 9.2 S m<sup>–1</sup> suitable for wearable electronics. Furthermore, the conductive hydrogels can be photopatterned to achieve micrometer-sized structures with high resolution. The photo-cross-linked hydrogels are used as electrodes to record stable and reliable surface electromyography (sEMG) signals. These novel photo-cross-linkable polymers combined with one-pot PEDOT (poly-EDOT) polymerization open possibilities for rapidly prototyping complex bioelectronic devices and creating custom-designed interfaces between electronics and biological systems.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"4 1","pages":"34–44"},"PeriodicalIF":4.7000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electrically conductive hydrogels represent an innovative platform for the development of bioelectronic devices. While photolithography technologies have enabled the fabrication of complex architectures with high resolution, photoprinting conductive hydrogels is still a challenging task because the conductive polymer absorbs light which can outcompete photopolymerization of the insulating scaffold. In this study, we introduce an approach to synthesizing conductive hydrogels in one step. Our approach combines the simultaneous photo-cross-linking of a polymeric scaffold and the polymerization of 3,4-ethylene dioxythiophene (EDOT), without additional photocatalysts. This process involves the copolymerization of photo-cross-linkable coumarin-containing monomers with sodium styrenesulfonate to produce a water-soluble poly(styrenesulfonate-co-coumarin acrylate) (P(SS-co-CoumAc)) copolymer. Our findings reveal that optimizing the [SS]:[CoumAc] ratio at 100:5 results in hydrogels with the strain at break up to 16%. This mechanical resilience is coupled with an electronic conductivity of 9.2 S m–1 suitable for wearable electronics. Furthermore, the conductive hydrogels can be photopatterned to achieve micrometer-sized structures with high resolution. The photo-cross-linked hydrogels are used as electrodes to record stable and reliable surface electromyography (sEMG) signals. These novel photo-cross-linkable polymers combined with one-pot PEDOT (poly-EDOT) polymerization open possibilities for rapidly prototyping complex bioelectronic devices and creating custom-designed interfaces between electronics and biological systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一锅光诱导形成导电水凝胶
导电水凝胶是开发生物电子设备的创新平台。虽然光刻技术能够以高分辨率制造复杂的结构,但光刻导电水凝胶仍然是一项具有挑战性的任务,因为导电聚合物会吸收光线,这可能会影响绝缘支架的光聚合。在本研究中,我们介绍了一种一步合成导电水凝胶的方法。我们的方法将聚合物支架的光交联与 3,4-乙烯二氧噻吩(EDOT)的聚合同时进行,无需额外的光催化剂。这一过程包括将可光交联的含香豆素单体与苯乙烯磺酸钠共聚,生成水溶性聚(苯乙烯磺酸盐-香豆素丙烯酸酯)(P(SS-co-CoumAc))共聚物。我们的研究结果表明,将[SS]:[CoumAc]的比例优化为 100:5,可使水凝胶的断裂应变高达 16%。这种机械弹性与 9.2 S m-1 的电子电导率相结合,适用于可穿戴电子设备。此外,这种导电水凝胶还可以通过光图案化实现高分辨率的微米级结构。光交联水凝胶可用作电极,记录稳定可靠的表面肌电图(sEMG)信号。这些新型光交联聚合物与一锅 PEDOT(聚 EDOT)聚合相结合,为快速制作复杂的生物电子设备原型和创建电子与生物系统之间的定制界面提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Design of Highly Conductive PILs by Simple Modification of Poly(epichlorohydrin-co-ethylene oxide) with Monosubstituted Imidazoles Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1