The Role of Polar Optical Modes in Wide Bandgap Semiconductor Quantum Structures

IF 1.4 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Nanoscience Pub Date : 2023-12-07 DOI:10.2174/0115734137269114231121072631
V.N. Stavrou, I.G. Tsoulos, N.E. Mastorakis
{"title":"The Role of Polar Optical Modes in Wide Bandgap Semiconductor Quantum Structures","authors":"V.N. Stavrou, I.G. Tsoulos, N.E. Mastorakis","doi":"10.2174/0115734137269114231121072631","DOIUrl":null,"url":null,"abstract":": In this paper, the interface polariton (IP), the confined (CF) modes in nanostructures made with wide bandgap semiconductors, as well as their contributions to the carrier scattering mechanism have been investigated. An asymmetric quantum well (AQW) made with ZnSe/CdSe/ZnS has been studied. More specifically, the dielectric continuum (DC) model has been employed to describe both the IP and the CF modes. Additionally, the Fermi golden rule has been used to estimate the electron transition rate within the asymmetric structure. Our numerical results show that the scattering rate for an electron which is localized at the bottom of the first subband above the well and drops within the quantum well, is characterized by regular peaks with an almost linear increase as the size of the QW increases. The emerge peaks are related to two different physical characteristics of the AQW system. These peaks are related to electron resonances and the threshold phonon emission (both CF and IP) called phonon resonances. The scattering rate of an electron which is localized at the bottom of the second subband above the well and makes transitions to all possible states within the quantum well gives only rise to phonon resonances. The research highlights the importance of the CF and IP modes on transition rates and their dependence on both the size of the quantum well and the asymmetry of the barrier materials.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137269114231121072631","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

: In this paper, the interface polariton (IP), the confined (CF) modes in nanostructures made with wide bandgap semiconductors, as well as their contributions to the carrier scattering mechanism have been investigated. An asymmetric quantum well (AQW) made with ZnSe/CdSe/ZnS has been studied. More specifically, the dielectric continuum (DC) model has been employed to describe both the IP and the CF modes. Additionally, the Fermi golden rule has been used to estimate the electron transition rate within the asymmetric structure. Our numerical results show that the scattering rate for an electron which is localized at the bottom of the first subband above the well and drops within the quantum well, is characterized by regular peaks with an almost linear increase as the size of the QW increases. The emerge peaks are related to two different physical characteristics of the AQW system. These peaks are related to electron resonances and the threshold phonon emission (both CF and IP) called phonon resonances. The scattering rate of an electron which is localized at the bottom of the second subband above the well and makes transitions to all possible states within the quantum well gives only rise to phonon resonances. The research highlights the importance of the CF and IP modes on transition rates and their dependence on both the size of the quantum well and the asymmetry of the barrier materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极性光学模式在宽带隙半导体量子结构中的作用
:本文研究了用宽带隙半导体制造的纳米结构中的界面极化子(IP)和约束(CF)模式,以及它们对载流子散射机制的贡献。我们研究了用 ZnSe/CdSe/ZnS 制成的非对称量子阱 (AQW)。更具体地说,我们采用了介电连续体(DC)模型来描述 IP 和 CF 模式。此外,我们还利用费米黄金法则来估算不对称结构中的电子转换率。我们的数值结果表明,电子定位在量子阱上方第一个子带的底部并在量子阱内下降,其散射率具有规则峰值的特征,随着量子阱尺寸的增大,散射率几乎呈线性增长。出现的峰值与 AQW 系统的两种不同物理特性有关。这些峰值与电子共振和称为声子共振的阈值声子发射(CF 和 IP)有关。电子的散射率定位在量子阱上方第二个子带的底部,并向量子阱内所有可能的状态跃迁,这只会引起声子共振。这项研究强调了 CF 和 IP 模式对转换率的重要性,以及它们对量子阱尺寸和势垒材料非对称性的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Nanoscience
Current Nanoscience 工程技术-材料科学:综合
CiteScore
3.50
自引率
6.70%
发文量
83
审稿时长
4.4 months
期刊介绍: Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine. Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology: Nanoelectronics and photonics Advanced Nanomaterials Nanofabrication and measurement Nanobiotechnology and nanomedicine Nanotechnology for energy Sensors and actuator Computational nanoscience and technology.
期刊最新文献
Fabrication of Ti/Zr-SnO2/PbO2-Nd Electrode for Efficient Electrocatalytic Degradation of Alizarine Yellow R Recent Advances of the Ultimate Microbial Influenced Corrosion (MIC): A Review A Comprehensive Review on Co-Crystals: Transforming Drug Delivery with Enhanced Solubility and Bioavailability Deposition of TiO2/Polymethylene Biguanide on Stainless Steel Wire for the Enhancement of Corrosion Resistance and Stability Synthesis of Silver Nanoparticles Using Haplophyllum robustum Bge. Extract: Antibacterial, Antifungal, and Scolicidal activity against Echinococcus granulosus Protoscolices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1