Pub Date : 2024-09-02DOI: 10.2174/0115734137305307240815065424
Sharad Sharma, Malkiet Kaur, Manju Nagpal
Poor solubility and bioavailability of various drug compounds are the biggest challenges faced by researchers and industrialists, hindering their therapeutic efficacy. Researchers have developed a versatile approach to enhance the solubility and bioavailability of the drug i.e., co-crystallization. Pharmaceutical co-crystals are solid, crystalline materials consisting of API and co-formers that have supramolecular chemistry with one another. Co-crystallization helps in enhancing a drug’s physico-chemical properties, such as bioavailability, solubility and dissolution, preserving its therapeutic effect. The API and co-former in co-crystals are bound to each other via hydrogen bonding, π-stacking, and Van der Waals forces. Several methods to prepare co-crystals, such as solvent evaporation method, grinding method, cooling crystallization method, etc, and various research reports, including all the methods of preparation are discussed in this review article. Conventional marketed products and patents on co-crystals are also included. Data has been gathered, and relevant literature reports have been examined utilizing a variety of search engines, including Google Scholar, ScienceDirect, Pubmed, and Google patents. After reviewing the literature, the researchers found that the cocrystallization method is one the simplest method to enhance drug bioavailability and solubility. Moreover, it enhances the pharmacokinetics parameters, pharmacodynamics properties, and melting point of the drug. In this review article, the researchers have compiled the recent literature reports on enhanced drug solubility via co-crystallization method. The researchers concluded that this review article can help other researchers by providing them with recent literature on this article and can compare the various methods of enhancing drug solubility and bioavailability. It also consists of compiled data of patents and marketed formulations prepared by the co-crystallization technique. Thus, co-crystallization could be established as a versatile approach for enhancing drug solubility and bioavailability.
各种药物化合物的溶解性和生物利用度差是研究人员和工业家面临的最大挑战,这阻碍了它们的治疗效果。研究人员开发了一种多功能方法来提高药物的溶解度和生物利用度,即共结晶。药物共晶体是由具有超分子化学性质的原料药和共配体组成的固体结晶材料。共结晶有助于增强药物的物理化学特性,如生物利用度、溶解度和溶出度,保持药物的治疗效果。共晶体中的原料药和共配体通过氢键、π堆积和范德华力相互结合。本综述文章讨论了制备共晶体的几种方法,如溶剂蒸发法、研磨法、冷却结晶法等,以及包括所有制备方法在内的各种研究报告。此外,还包括有关共晶体的常规市场产品和专利。研究人员收集了相关数据,并利用各种搜索引擎(包括 Google Scholar、ScienceDirect、Pubmed 和 Google Patents)对相关文献报告进行了研究。在查阅文献后,研究人员发现,共晶法是提高药物生物利用度和溶解度的最简单方法之一。此外,它还能提高药物的药代动力学参数、药效学特性和熔点。在这篇综述文章中,研究人员汇编了近期有关通过共结晶法提高药物溶解度的文献报道。研究人员认为,这篇综述文章可以帮助其他研究人员,为他们提供有关这篇文章的最新文献,并对提高药物溶解度和生物利用度的各种方法进行比较。文章还汇编了通过共结晶技术制备的专利和上市制剂的数据。因此,共结晶技术可作为提高药物溶解度和生物利用度的一种通用方法。
{"title":"A Comprehensive Review on Co-Crystals: Transforming Drug Delivery with Enhanced Solubility and Bioavailability","authors":"Sharad Sharma, Malkiet Kaur, Manju Nagpal","doi":"10.2174/0115734137305307240815065424","DOIUrl":"https://doi.org/10.2174/0115734137305307240815065424","url":null,"abstract":"Poor solubility and bioavailability of various drug compounds are the biggest challenges faced by researchers and industrialists, hindering their therapeutic efficacy. Researchers have developed a versatile approach to enhance the solubility and bioavailability of the drug i.e., co-crystallization. Pharmaceutical co-crystals are solid, crystalline materials consisting of API and co-formers that have supramolecular chemistry with one another. Co-crystallization helps in enhancing a drug’s physico-chemical properties, such as bioavailability, solubility and dissolution, preserving its therapeutic effect. The API and co-former in co-crystals are bound to each other via hydrogen bonding, π-stacking, and Van der Waals forces. Several methods to prepare co-crystals, such as solvent evaporation method, grinding method, cooling crystallization method, etc, and various research reports, including all the methods of preparation are discussed in this review article. Conventional marketed products and patents on co-crystals are also included. Data has been gathered, and relevant literature reports have been examined utilizing a variety of search engines, including Google Scholar, ScienceDirect, Pubmed, and Google patents. After reviewing the literature, the researchers found that the cocrystallization method is one the simplest method to enhance drug bioavailability and solubility. Moreover, it enhances the pharmacokinetics parameters, pharmacodynamics properties, and melting point of the drug. In this review article, the researchers have compiled the recent literature reports on enhanced drug solubility via co-crystallization method. The researchers concluded that this review article can help other researchers by providing them with recent literature on this article and can compare the various methods of enhancing drug solubility and bioavailability. It also consists of compiled data of patents and marketed formulations prepared by the co-crystallization technique. Thus, co-crystallization could be established as a versatile approach for enhancing drug solubility and bioavailability.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"4 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.2174/0115734137318645240820052805
Yasin Albarqouni, Gomaa Sanad, Kwok Feng Chong, Nurul Huda Abu Bakar, Randa Althubaiti, Arman Abdullah
: The persistent corrosion of metal surfaces poses a significant engineering challenge, including material degradation, loss of metal-structural integrity, and massive maintenance costs in various industrial, medical, and aerospace applications. Microorganisms such as archaea, bacteria, fungi, and microalgae can directly or indirectly influence metal corrosion. The degree of corrosiveness and corrosion healing varies depending on the microbe, medium, and metal substrate characteristics. Several attempts have been made to reveal answers to all questions about MIC. The published reports focused on testimonial failures and laboratory or field tests under varied situations. This review offers an overview of the most recent MIC research and emphasizes the scarcity of data on MIC detection, estimation, and the most recent approaches for MIC management. The review extends previously reported works and summarizes efforts for better understanding and cutting off MIC management in advanced technologies. Furthermore, it concludes with a final discussion of the current and future drawbacks and protective systems for preventing microbial-induced corrosion.
:在各种工业、医疗和航空航天应用中,金属表面的持久腐蚀是一项重大的工程挑战,包括材料降解、金属结构完整性丧失和巨额维护成本。古细菌、细菌、真菌和微藻等微生物会直接或间接地影响金属腐蚀。腐蚀性和腐蚀愈合的程度因微生物、介质和金属基质的特性而异。人们曾多次尝试揭示有关 MIC 的所有问题的答案。已发表的报告主要集中在不同情况下的失败见证和实验室或现场测试。本综述概述了最新的 MIC 研究,并强调了有关 MIC 检测、估算和最新 MIC 管理方法数据的稀缺性。综述扩展了之前报告的工作,并总结了为更好地理解和切断先进技术中的 MIC 管理所做的努力。此外,文章最后还讨论了当前和未来防止微生物诱发腐蚀的弊端和保护系统。
{"title":"Recent Advances of the Ultimate Microbial Influenced Corrosion (MIC): A Review","authors":"Yasin Albarqouni, Gomaa Sanad, Kwok Feng Chong, Nurul Huda Abu Bakar, Randa Althubaiti, Arman Abdullah","doi":"10.2174/0115734137318645240820052805","DOIUrl":"https://doi.org/10.2174/0115734137318645240820052805","url":null,"abstract":": The persistent corrosion of metal surfaces poses a significant engineering challenge, including material degradation, loss of metal-structural integrity, and massive maintenance costs in various industrial, medical, and aerospace applications. Microorganisms such as archaea, bacteria, fungi, and microalgae can directly or indirectly influence metal corrosion. The degree of corrosiveness and corrosion healing varies depending on the microbe, medium, and metal substrate characteristics. Several attempts have been made to reveal answers to all questions about MIC. The published reports focused on testimonial failures and laboratory or field tests under varied situations. This review offers an overview of the most recent MIC research and emphasizes the scarcity of data on MIC detection, estimation, and the most recent approaches for MIC management. The review extends previously reported works and summarizes efforts for better understanding and cutting off MIC management in advanced technologies. Furthermore, it concludes with a final discussion of the current and future drawbacks and protective systems for preventing microbial-induced corrosion.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"87 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: A novel attempt to degrade alizarine yellow R (AYR) by lead dioxide (PbO2)/ neodymium (Nd) coated Ti anode was investigated. Method: Ti/Zr-SnO2/PbO2-Nd electrode showed high oxygen evolution potential, high current density, and neutral conditions, which favored the degradation of AYR. The PbO2-Nd layer on Ti/Zr-SnO2 was further characterized by scanning electron microscopy, and X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The electrochemical properties of Ti/Zr- SnO2/PbO2-Nd electrode were evaluated by cyclic voltammetry, AC impedance spectroscopy, and accelerated life test. Result: The relatively higher oxygen evolution overpotential (~1.80 V) of the developed electrode can effectively suppress the occurrence of surface side reactions and oxygen evolution. A relatively lower charge transfer resistance (Rct, 18.0 Ω) of Ti/Zr-SnO2/PbO2-Nd electrode could be found. The Ti/Zr-SnO2/PbO2-Nd electrode exhibited an accelerated lifetime of 110 min under a very high current density of 10,000 A/m2. The doping of Nd could produce loosely-stacked sheet-like structures, thus, the number of active sites on the electrode surface increases. Conclusion: Moreover, an outstanding conductivity of Ti/Zr-SnO2/PbO2-Nd electrode was obtained, which favored the electron transfer and catalytic activity of the modified electrode. The Ti/Zr-SnO2/PbO2-Nd electrode exhibited improved electrochemical performances and higher oxygen evolution potential, and the highest oxygen evolution potential is 1.80 V. Under the current density of 30 mA/cm2, the electrocatalytic degradation of 92.3% could be achieved in 180 min. The electrochemical oxidation of AYR at the Ti/Zr-SnO2/PbO2-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater. conclusion: The electrochemical oxidation of AYR at the Ti/Zr-SnO2/PbO2-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater.
{"title":"Fabrication of Ti/Zr-SnO2/PbO2-Nd Electrode for Efficient Electrocatalytic Degradation of Alizarine Yellow R","authors":"Jing Zhang, Bi Yang, Guan-Jin Gao, Qing-Dong Miao, Wei-Guo Hu, Jin-Gang Yu","doi":"10.2174/0115734137325822240819050628","DOIUrl":"https://doi.org/10.2174/0115734137325822240819050628","url":null,"abstract":"Introduction: A novel attempt to degrade alizarine yellow R (AYR) by lead dioxide (PbO2)/ neodymium (Nd) coated Ti anode was investigated. Method: Ti/Zr-SnO2/PbO2-Nd electrode showed high oxygen evolution potential, high current density, and neutral conditions, which favored the degradation of AYR. The PbO2-Nd layer on Ti/Zr-SnO2 was further characterized by scanning electron microscopy, and X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The electrochemical properties of Ti/Zr- SnO2/PbO2-Nd electrode were evaluated by cyclic voltammetry, AC impedance spectroscopy, and accelerated life test. Result: The relatively higher oxygen evolution overpotential (~1.80 V) of the developed electrode can effectively suppress the occurrence of surface side reactions and oxygen evolution. A relatively lower charge transfer resistance (Rct, 18.0 Ω) of Ti/Zr-SnO2/PbO2-Nd electrode could be found. The Ti/Zr-SnO2/PbO2-Nd electrode exhibited an accelerated lifetime of 110 min under a very high current density of 10,000 A/m2. The doping of Nd could produce loosely-stacked sheet-like structures, thus, the number of active sites on the electrode surface increases. Conclusion: Moreover, an outstanding conductivity of Ti/Zr-SnO2/PbO2-Nd electrode was obtained, which favored the electron transfer and catalytic activity of the modified electrode. The Ti/Zr-SnO2/PbO2-Nd electrode exhibited improved electrochemical performances and higher oxygen evolution potential, and the highest oxygen evolution potential is 1.80 V. Under the current density of 30 mA/cm2, the electrocatalytic degradation of 92.3% could be achieved in 180 min. The electrochemical oxidation of AYR at the Ti/Zr-SnO2/PbO2-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater. conclusion: The electrochemical oxidation of AYR at the Ti/Zr-SnO2/PbO2-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"8 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.2174/0115734137328566240821090454
Razih Movahedi, Damoun Razmjoue, Ahmad Movahedpour, Rajender S. Varma, Mahmoud Bahmani
Background: Silver nanoparticles (AgNPs) biosynthesized via the deployment of plant extractives have garnered much attention, especially due to their antimicrobial properties. Herein, the green synthesis of silver nanoparticles has been accomplished using the aqueous extract of Haplophyllum robustum, which includes a study of its antibacterial, antifungal, and scolicidal activity. Methods: The preparative process was followed by characterization using UV-Vis spectroscopy, and the ensuing spherical AgNPs of average size 7-25 nm were identified by Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The antibacterial, antifungal, and scolicidal activities of AgNPs were assessed by deploying disc diffusion and microdilution methods against four standard bacteria and four typical Candida species and liver hydatid cyst protoscoleces, where they exhibited good biological activity. Results: The results showed that the greener synthesis of silver nanoparticles using the aqueous extract of renewable and abundant H. robustum plant is a simple, inexpensive, and safer alternative that does not use any toxic or harmful substances. Conclusion: Thus, with minimal or no side effects, this approach to AgNPs bodes well for their appliances as antibacterial, antifungal, and scolicidal agents.
{"title":"Synthesis of Silver Nanoparticles Using Haplophyllum robustum Bge. Extract: Antibacterial, Antifungal, and Scolicidal activity against Echinococcus granulosus Protoscolices","authors":"Razih Movahedi, Damoun Razmjoue, Ahmad Movahedpour, Rajender S. Varma, Mahmoud Bahmani","doi":"10.2174/0115734137328566240821090454","DOIUrl":"https://doi.org/10.2174/0115734137328566240821090454","url":null,"abstract":"Background: Silver nanoparticles (AgNPs) biosynthesized via the deployment of plant extractives have garnered much attention, especially due to their antimicrobial properties. Herein, the green synthesis of silver nanoparticles has been accomplished using the aqueous extract of Haplophyllum robustum, which includes a study of its antibacterial, antifungal, and scolicidal activity. Methods: The preparative process was followed by characterization using UV-Vis spectroscopy, and the ensuing spherical AgNPs of average size 7-25 nm were identified by Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The antibacterial, antifungal, and scolicidal activities of AgNPs were assessed by deploying disc diffusion and microdilution methods against four standard bacteria and four typical Candida species and liver hydatid cyst protoscoleces, where they exhibited good biological activity. Results: The results showed that the greener synthesis of silver nanoparticles using the aqueous extract of renewable and abundant H. robustum plant is a simple, inexpensive, and safer alternative that does not use any toxic or harmful substances. Conclusion: Thus, with minimal or no side effects, this approach to AgNPs bodes well for their appliances as antibacterial, antifungal, and scolicidal agents.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"31 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.2174/0115734137310115240812071132
Kiruthigha Thirumal, Gokul Sridharan, Dhanraj Ganapathy, Ashok K. Sundramoorthy
Background: Orthodontic treatment relies on stainless steel (SS) wires to apply forces and torque to reposition teeth. However, SS wires are susceptible to wear and corrosion in the oral environment, necessitating improvements in their durability. Objective: This study explores the potential of a coating comprising titanium dioxide (TiO2) and polymethylene biguanide (PHMB) to enhance the corrosion resistance of SS wires. Methods: SS wires were coated with a solution containing PHMB and TiO2 using a drop-casting technique. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), and electrochemical tests, including impedance spectroscopy and potentiodynamic polarization, were conducted to characterize the coated wires and evaluate their corrosion resistance. Results: FE-SEM, EDAX, and Emap analysis confirmed the presence and uniform deposition of PHMB/TiO2 onto the SS wire surface. Electrochemical tests revealed that the PHMB/TiO2- coated SS wires exhibited a significantly lower corrosion rate (7.08×10−6 mm/year) and higher corrosion resistance (562466 Ω) compared to bare SS. Conclusion: The PHMB/TiO2 coated SS wire exhibited high corrosion resistance and offered potential benefits for orthodontic treatments. Further research and optimization of this coating may help to improve the durability and reliability of orthodontic appliances.
背景:正畸治疗依靠不锈钢(SS)钢丝施加力和扭矩来调整牙齿位置。然而,不锈钢丝在口腔环境中容易磨损和腐蚀,因此有必要提高其耐用性。研究目的本研究探讨了由二氧化钛(TiO2)和聚甲基双胍(PHMB)组成的涂层增强 SS 钢丝耐腐蚀性的潜力。方法:采用滴铸技术在 SS 钢丝上涂覆含有 PHMB 和二氧化钛的溶液。采用场发射扫描电子显微镜 (FE-SEM)、能量色散 X 射线光谱 (EDAX) 和电化学测试(包括阻抗光谱和电位极化)来表征涂层金属丝并评估其耐腐蚀性。结果FE-SEM、EDAX 和 Emap 分析证实了 PHMB/TiO2 在 SS 金属丝表面的存在和均匀沉积。电化学测试表明,与裸 SS 相比,PHMB/TiO2- 涂层 SS 金属丝的腐蚀速率(7.08×10-6 mm/年)明显降低,耐腐蚀性(562466 Ω)明显提高。结论PHMB/TiO2涂层的不锈钢丝具有很高的耐腐蚀性,为正畸治疗提供了潜在的益处。对这种涂层的进一步研究和优化可能有助于提高正畸装置的耐用性和可靠性。
{"title":"Deposition of TiO2/Polymethylene Biguanide on Stainless Steel Wire for the Enhancement of Corrosion Resistance and Stability","authors":"Kiruthigha Thirumal, Gokul Sridharan, Dhanraj Ganapathy, Ashok K. Sundramoorthy","doi":"10.2174/0115734137310115240812071132","DOIUrl":"https://doi.org/10.2174/0115734137310115240812071132","url":null,"abstract":"Background: Orthodontic treatment relies on stainless steel (SS) wires to apply forces and torque to reposition teeth. However, SS wires are susceptible to wear and corrosion in the oral environment, necessitating improvements in their durability. Objective: This study explores the potential of a coating comprising titanium dioxide (TiO2) and polymethylene biguanide (PHMB) to enhance the corrosion resistance of SS wires. Methods: SS wires were coated with a solution containing PHMB and TiO2 using a drop-casting technique. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), and electrochemical tests, including impedance spectroscopy and potentiodynamic polarization, were conducted to characterize the coated wires and evaluate their corrosion resistance. Results: FE-SEM, EDAX, and Emap analysis confirmed the presence and uniform deposition of PHMB/TiO2 onto the SS wire surface. Electrochemical tests revealed that the PHMB/TiO2- coated SS wires exhibited a significantly lower corrosion rate (7.08×10−6 mm/year) and higher corrosion resistance (562466 Ω) compared to bare SS. Conclusion: The PHMB/TiO2 coated SS wire exhibited high corrosion resistance and offered potential benefits for orthodontic treatments. Further research and optimization of this coating may help to improve the durability and reliability of orthodontic appliances.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"3 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.2174/0115734137317518240723112352
Hanaa. K. Abd El-Hamid
Bioceramics are engineered materials that achieve their applications in the medical field. Bioceramics are promising inorganic materials to create scaffolds for bone regeneration due to their desirable properties, such as biocompatibility, osteoconduction, and their similarity with bone composition. Bioceramics can operate as tissue replacement and can be used for coating metal implants to increase their biocompatibility. Bioceramics are classified into three types: bioinert ceramics, bioactive bioceramics, and biodegradable ceramics. There are different methods for the fabrication of bioceramics, they can be prepared by conventional powder processing methods or by some new unconventional methods. Bioceramics can be fabricated by a sintering process, which takes place through the hardening of the green bodies at a relatively high temperature lower than their melting point. Nowadays, microwave sintering is excellent in both heating efficiency, saving energy and time, and the concomitant processing cost. There are other methods used to obtain bioceramics; such as sol-gel, gas-foaming, gel-casting, and freeze-casting techniques. Recently, the CAD/CAM technique (computer-aided design/manufacture) was used in the fabrication of bioceramics and is applied in the dentistry field. The application of bioceramics connects to the repair of the skeletal system, which consists of joints, bones, and teeth, as well as both soft and hard tissues. Bioceramics can be used to replace parts of the cardiovascular system, especially heart valves.
{"title":"Advanced Bioceramics: Properties, Fabrication and Applications","authors":"Hanaa. K. Abd El-Hamid","doi":"10.2174/0115734137317518240723112352","DOIUrl":"https://doi.org/10.2174/0115734137317518240723112352","url":null,"abstract":"Bioceramics are engineered materials that achieve their applications in the medical field. Bioceramics are promising inorganic materials to create scaffolds for bone regeneration due to their desirable properties, such as biocompatibility, osteoconduction, and their similarity with bone composition. Bioceramics can operate as tissue replacement and can be used for coating metal implants to increase their biocompatibility. Bioceramics are classified into three types: bioinert ceramics, bioactive bioceramics, and biodegradable ceramics. There are different methods for the fabrication of bioceramics, they can be prepared by conventional powder processing methods or by some new unconventional methods. Bioceramics can be fabricated by a sintering process, which takes place through the hardening of the green bodies at a relatively high temperature lower than their melting point. Nowadays, microwave sintering is excellent in both heating efficiency, saving energy and time, and the concomitant processing cost. There are other methods used to obtain bioceramics; such as sol-gel, gas-foaming, gel-casting, and freeze-casting techniques. Recently, the CAD/CAM technique (computer-aided design/manufacture) was used in the fabrication of bioceramics and is applied in the dentistry field. The application of bioceramics connects to the repair of the skeletal system, which consists of joints, bones, and teeth, as well as both soft and hard tissues. Bioceramics can be used to replace parts of the cardiovascular system, especially heart valves.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"275 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Orthodontic arch wires, typically made of Nickel Titanium (NiTi), are widely utilized in dental procedures for correcting teeth misalignment and jaw issues due to their favorable mechanical attributes and cost-effectiveness. However, these NiTi wires are prone to corrosion in the oral environment, leading to diminished mechanical stability, compromised aesthetics, and potential health concerns for patients. Objective: There is a growing demand to augment the corrosion resistance and stability of orthodontic wires. Hence, this study aimed to address these issues. Herein, zirconium dioxide (ZrO2) and oxidized ethylene glycol (OEG) films were deposited onto NiTi wires to improve the corrosion resistance and stability. Methods: NiTi wires were modified by a two-step process involving electrodeposition of ZrO2 and oxidized ethylene glycol (OEG) film. The surface characterizations of coated material (OEG/ZrO2/NiTi) were carried out by using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), and Electron Microprobe Analysis (EMap) to confirm the elemental composition of the coated NiTi wire. Results: The OEG/ZrO2/NiTi wire exhibited a potentiodynamic polarization resistance of 547037 Ω and higher stability than the bare NiTi wire (396421 Ω). The corrosion rate for OEG/ZrO2/NiTi wire was found to be 0.040 mm/year, which was comparatively lower than a bare NiTi wire (0.069 mm/year). Due to the formation of OEG/ZrO2 film, NiTi wire became electrically insulative and showed a higher impedance than bare NiTi wire. Conclusion: The bilayer coating of ZrO2 and OEG has proven to significantly improve the corrosion resistance and stability of the wires. Thus, these materials can be considered for coating orthodontic arch wires with improved corrosion stability.
{"title":"Oxidized Ethylene Glycol/ZrO2-coated NiTi Orthodontic Arch Wires: Surface Characterization and Electrochemical and Corrosion Studies","authors":"Abisha Perumal, Gokul Sridharan, Dhanraj Ganapathy, Keerthana Madhivanan, Ashok K. Sundramoorthy","doi":"10.2174/0115734137313324240723073001","DOIUrl":"https://doi.org/10.2174/0115734137313324240723073001","url":null,"abstract":"Background: Orthodontic arch wires, typically made of Nickel Titanium (NiTi), are widely utilized in dental procedures for correcting teeth misalignment and jaw issues due to their favorable mechanical attributes and cost-effectiveness. However, these NiTi wires are prone to corrosion in the oral environment, leading to diminished mechanical stability, compromised aesthetics, and potential health concerns for patients. Objective: There is a growing demand to augment the corrosion resistance and stability of orthodontic wires. Hence, this study aimed to address these issues. Herein, zirconium dioxide (ZrO2) and oxidized ethylene glycol (OEG) films were deposited onto NiTi wires to improve the corrosion resistance and stability. Methods: NiTi wires were modified by a two-step process involving electrodeposition of ZrO2 and oxidized ethylene glycol (OEG) film. The surface characterizations of coated material (OEG/ZrO2/NiTi) were carried out by using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), and Electron Microprobe Analysis (EMap) to confirm the elemental composition of the coated NiTi wire. Results: The OEG/ZrO2/NiTi wire exhibited a potentiodynamic polarization resistance of 547037 Ω and higher stability than the bare NiTi wire (396421 Ω). The corrosion rate for OEG/ZrO2/NiTi wire was found to be 0.040 mm/year, which was comparatively lower than a bare NiTi wire (0.069 mm/year). Due to the formation of OEG/ZrO2 film, NiTi wire became electrically insulative and showed a higher impedance than bare NiTi wire. Conclusion: The bilayer coating of ZrO2 and OEG has proven to significantly improve the corrosion resistance and stability of the wires. Thus, these materials can be considered for coating orthodontic arch wires with improved corrosion stability.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"41 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.2174/0115734137293979240709113456
Shangdian Wang, Zhiwei Zhou, Songhong Yang, Zilu Guo, Ting Le, Jun Wu, Zhiyu Guan, Wenjun Liu, Wenting Wu
Essential Oil (EO) is widely usedin medicine because of its antioxidant, antiinflammatory, antibacterial, antimicrobial, and antiviral properties. However, the hydrophobicity, volatility, instability, and potential toxicity of EO make it difficult to achieve efficient delivery in vivo, which limits its application. In recent years, nano drug delivery systems have been gradually applied to encapsulate EO to improve their physical and chemical properties. In order to further improve the delivery efficiency of EOs, this review summarized the commonly used nano delivery systems for EOs, analyzed their preparation principles, and listed the factors affecting the delivery efficiency of essential oils. Moreover, the challenges faced by the EO delivery system are sorted out, and the corresponding solutions are proposed, with the hope of indicating the development direction for expanding the application of the nano drug delivery system in EO.
{"title":"Research Progress in Essential Oil Nanodelivery Systems","authors":"Shangdian Wang, Zhiwei Zhou, Songhong Yang, Zilu Guo, Ting Le, Jun Wu, Zhiyu Guan, Wenjun Liu, Wenting Wu","doi":"10.2174/0115734137293979240709113456","DOIUrl":"https://doi.org/10.2174/0115734137293979240709113456","url":null,"abstract":"Essential Oil (EO) is widely usedin medicine because of its antioxidant, antiinflammatory, antibacterial, antimicrobial, and antiviral properties. However, the hydrophobicity, volatility, instability, and potential toxicity of EO make it difficult to achieve efficient delivery in vivo, which limits its application. In recent years, nano drug delivery systems have been gradually applied to encapsulate EO to improve their physical and chemical properties. In order to further improve the delivery efficiency of EOs, this review summarized the commonly used nano delivery systems for EOs, analyzed their preparation principles, and listed the factors affecting the delivery efficiency of essential oils. Moreover, the challenges faced by the EO delivery system are sorted out, and the corresponding solutions are proposed, with the hope of indicating the development direction for expanding the application of the nano drug delivery system in EO.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"42 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.2174/0115734137311390240630120055
Ghanshyam Parmar, Jay Mukesh Chudasama, Chintan Aundhia
: The pharmaceutical sciences are gradually shielding mankind from a plethora of deadly but as-of-yet-undiscovered ailments. Many diseases, some of which can be fatal, have their initial line of defence on the skin. A significant challenge for scientists is the development of appropriate pharmacological formulations for transdermal drug administration. Low side effect risk reduces first-pass impact, and good patient compliance makes transdermal distribution superior to oral delivery. This is why transdermal medication delivery is so important. Thanks to advancements in pharmaceutical delivery systems, the skin can now absorb medications more effectively. Researchers from different parts of the globe have investigated many different kinds of medications as possible transdermal delivery routes using electrospinning nanofibres. The skin can more easily absorb therapeutic compounds thanks to the nanofibres' ability to concentrate them. It is possible to load hydrophilic and lipophilic medications onto polymeric nanofibres. Another option is the transdermal distribution of biopolymer nanofibres. Over long periods of time, they control the release of medicinal substances. Nanofibres and nanoparticles allow for the controlled release of both hydrophobic and hydrophilic drugs. Transdermal and topical medication delivery using polymeric electrospinning nanofibres laden with nanoparticles and medicines is the subject of this research review. After that, we'll look at some practical instances of engineers using electrospinning fibres to control the release of drugs in reaction to environmental and internal factors. Afterwards, we will quickly go over the latest developments in tissue engineering, hard tissue engineering [which includes repairing musculoskeletal systems, bones, and cartilage], and cancer therapy that uses electrospin nanofiber scaffolds to control the distribution of drugs. Thanks to recent advancements in medicine and pharmaceuticals, nanofibres may soon be able to transport a wide variety of drugs, allowing for more targeted methods of cellular regeneration and topical medication delivery.
{"title":"Weaving the Future of Topical Medicine: A Journey with Electrospinning Nanofibre Scaffolds","authors":"Ghanshyam Parmar, Jay Mukesh Chudasama, Chintan Aundhia","doi":"10.2174/0115734137311390240630120055","DOIUrl":"https://doi.org/10.2174/0115734137311390240630120055","url":null,"abstract":": The pharmaceutical sciences are gradually shielding mankind from a plethora of deadly but as-of-yet-undiscovered ailments. Many diseases, some of which can be fatal, have their initial line of defence on the skin. A significant challenge for scientists is the development of appropriate pharmacological formulations for transdermal drug administration. Low side effect risk reduces first-pass impact, and good patient compliance makes transdermal distribution superior to oral delivery. This is why transdermal medication delivery is so important. Thanks to advancements in pharmaceutical delivery systems, the skin can now absorb medications more effectively. Researchers from different parts of the globe have investigated many different kinds of medications as possible transdermal delivery routes using electrospinning nanofibres. The skin can more easily absorb therapeutic compounds thanks to the nanofibres' ability to concentrate them. It is possible to load hydrophilic and lipophilic medications onto polymeric nanofibres. Another option is the transdermal distribution of biopolymer nanofibres. Over long periods of time, they control the release of medicinal substances. Nanofibres and nanoparticles allow for the controlled release of both hydrophobic and hydrophilic drugs. Transdermal and topical medication delivery using polymeric electrospinning nanofibres laden with nanoparticles and medicines is the subject of this research review. After that, we'll look at some practical instances of engineers using electrospinning fibres to control the release of drugs in reaction to environmental and internal factors. Afterwards, we will quickly go over the latest developments in tissue engineering, hard tissue engineering [which includes repairing musculoskeletal systems, bones, and cartilage], and cancer therapy that uses electrospin nanofiber scaffolds to control the distribution of drugs. Thanks to recent advancements in medicine and pharmaceuticals, nanofibres may soon be able to transport a wide variety of drugs, allowing for more targeted methods of cellular regeneration and topical medication delivery.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"13 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.2174/0115734137294469240702070418
Zirui Liu, Dan Li, Baofeng Zhao, Xifan Mei
Background: Gouty arthritis, characterized by excruciating pain and discomfort, poses a significant burden on patients. While nanomedicines have shown promise in addressing this ailment, their complicated synthesis processes often involve potentially toxic procedures, contributing to adverse side effects in disease management. Methods: In this study, we introduce a straightforward and elegant solution by utilizing easily prepared gold platinum (AuPt) nanoparticles for the treatment of gouty arthritis. The synthesis of these nanoparticles involves the use of gold and platinum precursors in conjunction with NaBH4, simplifying the manufacturing process. Experimental models of gout were established in both in vivo and in vitro settings through lipopolysaccharide and monosodium urate crystal induction. Results: Our findings revealed that AuPt nanoparticles exhibited potent anti-inflammatory effects against gout. This effect was attributed to their ability to activate the Nrf2/HO-1 pathway, resulting in pain alleviation and the inhibition of inflammation, ultimately leading to the reduction of joint edema. With their uncomplicated synthesis and promising therapeutic potential, these simply prepared AuPt nanoparticles emerge as a compelling candidate for pharmaceutical intervention in the treatment of gouty arthritis. Conclusion: This approach not only holds the promise of delivering effective relief to patients but also minimizes the risk of unwanted side effects associated with complex nanomedicine synthesis processes.
{"title":"Therapeutic Effect of Unmodified Gold-platinum Nanoparticles on Gouty Arthritis Via the Nrf2/HO-1 Pathway","authors":"Zirui Liu, Dan Li, Baofeng Zhao, Xifan Mei","doi":"10.2174/0115734137294469240702070418","DOIUrl":"https://doi.org/10.2174/0115734137294469240702070418","url":null,"abstract":"Background: Gouty arthritis, characterized by excruciating pain and discomfort, poses a significant burden on patients. While nanomedicines have shown promise in addressing this ailment, their complicated synthesis processes often involve potentially toxic procedures, contributing to adverse side effects in disease management. Methods: In this study, we introduce a straightforward and elegant solution by utilizing easily prepared gold platinum (AuPt) nanoparticles for the treatment of gouty arthritis. The synthesis of these nanoparticles involves the use of gold and platinum precursors in conjunction with NaBH4, simplifying the manufacturing process. Experimental models of gout were established in both in vivo and in vitro settings through lipopolysaccharide and monosodium urate crystal induction. Results: Our findings revealed that AuPt nanoparticles exhibited potent anti-inflammatory effects against gout. This effect was attributed to their ability to activate the Nrf2/HO-1 pathway, resulting in pain alleviation and the inhibition of inflammation, ultimately leading to the reduction of joint edema. With their uncomplicated synthesis and promising therapeutic potential, these simply prepared AuPt nanoparticles emerge as a compelling candidate for pharmaceutical intervention in the treatment of gouty arthritis. Conclusion: This approach not only holds the promise of delivering effective relief to patients but also minimizes the risk of unwanted side effects associated with complex nanomedicine synthesis processes.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"18 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}