{"title":"Structure-aware decoupled imputation network for multivariate time series","authors":"Nourhan Ahmed, Lars Schmidt-Thieme","doi":"10.1007/s10618-023-00987-9","DOIUrl":null,"url":null,"abstract":"<p>Handling incomplete multivariate time series is an important and fundamental concern for a variety of domains. Existing time-series imputation approaches rely on basic assumptions regarding relationship information between sensors, posing significant challenges since inter-sensor interactions in the real world are often complex and unknown beforehand. Specifically, there is a lack of in-depth investigation into (1) the coexistence of relationships between sensors and (2) the incorporation of reciprocal impact between sensor properties and inter-sensor relationships for the time-series imputation problem. To fill this gap, we present the Structure-aware Decoupled imputation network (SaD), which is designed to model sensor characteristics and relationships between sensors in distinct latent spaces. Our approach is equipped with a two-step knowledge integration scheme that incorporates the influence between the sensor attribute information as well as sensor relationship information. The experimental results indicate that when compared to state-of-the-art models for time-series imputation tasks, our proposed method can reduce error by around 15%.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"107 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-023-00987-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Handling incomplete multivariate time series is an important and fundamental concern for a variety of domains. Existing time-series imputation approaches rely on basic assumptions regarding relationship information between sensors, posing significant challenges since inter-sensor interactions in the real world are often complex and unknown beforehand. Specifically, there is a lack of in-depth investigation into (1) the coexistence of relationships between sensors and (2) the incorporation of reciprocal impact between sensor properties and inter-sensor relationships for the time-series imputation problem. To fill this gap, we present the Structure-aware Decoupled imputation network (SaD), which is designed to model sensor characteristics and relationships between sensors in distinct latent spaces. Our approach is equipped with a two-step knowledge integration scheme that incorporates the influence between the sensor attribute information as well as sensor relationship information. The experimental results indicate that when compared to state-of-the-art models for time-series imputation tasks, our proposed method can reduce error by around 15%.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.