Missing value replacement in strings and applications.

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data Mining and Knowledge Discovery Pub Date : 2025-01-01 Epub Date: 2025-01-22 DOI:10.1007/s10618-024-01074-3
Giulia Bernardini, Chang Liu, Grigorios Loukides, Alberto Marchetti-Spaccamela, Solon P Pissis, Leen Stougie, Michelle Sweering
{"title":"Missing value replacement in strings and applications.","authors":"Giulia Bernardini, Chang Liu, Grigorios Loukides, Alberto Marchetti-Spaccamela, Solon P Pissis, Leen Stougie, Michelle Sweering","doi":"10.1007/s10618-024-01074-3","DOIUrl":null,"url":null,"abstract":"<p><p>Missing values arise routinely in real-world sequential (string) datasets due to: (1) imprecise data measurements; (2) flexible sequence modeling, such as binding profiles of molecular sequences; or (3) the existence of confidential information in a dataset which has been deleted deliberately for privacy protection. In order to analyze such datasets, it is often important to replace each missing value, with one or more <i>valid</i> letters, in an efficient and effective way. Here we formalize this task as a combinatorial optimization problem: the set of constraints includes the <i>context</i> of the missing value (i.e., its vicinity) as well as a finite set of user-defined <i>forbidden</i> patterns, modeling, for instance, implausible or confidential patterns; and the objective function seeks to <i>minimize the number of new letters</i> we introduce. Algorithmically, our problem translates to finding shortest paths in special graphs that contain <i>forbidden edges</i> representing the forbidden patterns. Our work makes the following contributions: (1) we design a linear-time algorithm to solve this problem for strings over constant-sized alphabets; (2) we show how our algorithm can be effortlessly applied to <i>fully</i> sanitize a private string in the presence of a set of fixed-length forbidden patterns [Bernardini et al. 2021a]; (3) we propose a methodology for sanitizing and clustering a collection of private strings that utilizes our algorithm and an effective and efficiently computable distance measure; and (4) we present extensive experimental results showing that our methodology can efficiently sanitize a collection of private strings while preserving clustering quality, outperforming the state of the art and baselines. To arrive at our theoretical results, we employ techniques from formal languages and combinatorial pattern matching.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"39 2","pages":"12"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01074-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Missing values arise routinely in real-world sequential (string) datasets due to: (1) imprecise data measurements; (2) flexible sequence modeling, such as binding profiles of molecular sequences; or (3) the existence of confidential information in a dataset which has been deleted deliberately for privacy protection. In order to analyze such datasets, it is often important to replace each missing value, with one or more valid letters, in an efficient and effective way. Here we formalize this task as a combinatorial optimization problem: the set of constraints includes the context of the missing value (i.e., its vicinity) as well as a finite set of user-defined forbidden patterns, modeling, for instance, implausible or confidential patterns; and the objective function seeks to minimize the number of new letters we introduce. Algorithmically, our problem translates to finding shortest paths in special graphs that contain forbidden edges representing the forbidden patterns. Our work makes the following contributions: (1) we design a linear-time algorithm to solve this problem for strings over constant-sized alphabets; (2) we show how our algorithm can be effortlessly applied to fully sanitize a private string in the presence of a set of fixed-length forbidden patterns [Bernardini et al. 2021a]; (3) we propose a methodology for sanitizing and clustering a collection of private strings that utilizes our algorithm and an effective and efficiently computable distance measure; and (4) we present extensive experimental results showing that our methodology can efficiently sanitize a collection of private strings while preserving clustering quality, outperforming the state of the art and baselines. To arrive at our theoretical results, we employ techniques from formal languages and combinatorial pattern matching.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
期刊最新文献
Missing value replacement in strings and applications. FRUITS: feature extraction using iterated sums for time series classification Bounding the family-wise error rate in local causal discovery using Rademacher averages Evaluating the disclosure risk of anonymized documents via a machine learning-based re-identification attack Efficient learning with projected histograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1