Lidar Observations of Stratospheric Aerosols in Obninsk in 2012–2021: Influence of Volcanic Eruptions and Biomass Burning

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Izvestiya Atmospheric and Oceanic Physics Pub Date : 2023-12-08 DOI:10.1134/s0001433823140104
V. A. Korshunov
{"title":"Lidar Observations of Stratospheric Aerosols in Obninsk in 2012–2021: Influence of Volcanic Eruptions and Biomass Burning","authors":"V. A. Korshunov","doi":"10.1134/s0001433823140104","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Results of lidar observations at a wavelength of 532 nm in Obninsk over the period from 2012 to 2021 are presented. In 2014–2018 the stratosphere aerosol was in a state close to the background. In 2019, aerosol maxima were observed in the 15–30 km layer associated with the eruptions of the Ambae and Raikoke volcanoes. The seasonal behavior of the integral backscattering coefficient in the background period is presented. In the lower layer of the stratosphere of 13–23 km, an increase in backscattering was observed in the second half of the year, associated with an increase in the number of natural fires. In the 23–30 km layer, the maximum backscattering was observed in summer. It was found that the contribution of the lower layer of 10–15 km to the optical thickness of the entire layer of 10–30 km is on average 61%. This implies the need to take into account the aerosol of the lower layer of 10–15 km in the overall balance of stratospheric aerosol in chemical–climatic models of the stratosphere. In the second half of the year, aerosol of natural fires is often observed in the 10–15 km layer. In some episodes, the addition of natural fire aerosol to an optical layer thickness of 10–30 km with respect to the spherical sulfuric acid aerosol ranges from 50 to 150%. At the same time, in annual mean terms, this additive in 2014–2021 on average was only 10%. In the last 5 years, there has been a trend towards an increase in the content of aerosol from natural fires, but so far the content of sulfate aerosol in the stratosphere remains predominant.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433823140104","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Results of lidar observations at a wavelength of 532 nm in Obninsk over the period from 2012 to 2021 are presented. In 2014–2018 the stratosphere aerosol was in a state close to the background. In 2019, aerosol maxima were observed in the 15–30 km layer associated with the eruptions of the Ambae and Raikoke volcanoes. The seasonal behavior of the integral backscattering coefficient in the background period is presented. In the lower layer of the stratosphere of 13–23 km, an increase in backscattering was observed in the second half of the year, associated with an increase in the number of natural fires. In the 23–30 km layer, the maximum backscattering was observed in summer. It was found that the contribution of the lower layer of 10–15 km to the optical thickness of the entire layer of 10–30 km is on average 61%. This implies the need to take into account the aerosol of the lower layer of 10–15 km in the overall balance of stratospheric aerosol in chemical–climatic models of the stratosphere. In the second half of the year, aerosol of natural fires is often observed in the 10–15 km layer. In some episodes, the addition of natural fire aerosol to an optical layer thickness of 10–30 km with respect to the spherical sulfuric acid aerosol ranges from 50 to 150%. At the same time, in annual mean terms, this additive in 2014–2021 on average was only 10%. In the last 5 years, there has been a trend towards an increase in the content of aerosol from natural fires, but so far the content of sulfate aerosol in the stratosphere remains predominant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2012-2021 年奥布宁斯克平流层气溶胶激光雷达观测:火山爆发和生物质燃烧的影响
摘要介绍了2012年至2021年期间在奥布宁斯克进行的波长为532 nm的激光雷达观测结果。2014-2018年,平流层气溶胶处于接近本底的状态。2019年,在15-30千米层观测到了与安贝火山和雷科克火山喷发相关的气溶胶最大值。介绍了背景时期积分后向散射系数的季节性变化。在 13-23 千米的平流层下层,观测到下半年后向散射增加,这与自然火灾数量增加有关。在 23-30 千米层,夏季的反向散射最大。研究发现,10-15 千米低层对整个 10-30 千米层光学厚度的贡献率平均为 61%。这意味着在平流层化学-气候模型的平流层气溶胶总体平衡中需要考虑 10-15 千米低层的气溶胶。在下半年,10-15 公里层经常观测到自然火灾气溶胶。在某些情况下,相对于球形硫酸气溶胶,10-30 千米光学层厚度的自然火气溶胶增加了 50%到 150%。同时,按年均值计算,2014-2021 年的这一附加值平均仅为 10%。在过去 5 年中,自然火灾产生的气溶胶含量有增加的趋势,但到目前为止,平流层中的硫酸气溶胶含量仍占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
期刊最新文献
Bayesian Estimates of Changes in Russian River Runoff in the 21st Century Based on the CMIP6 Ensemble Model Simulations Natural Sinks and Sources of CO2 and CH4 in the Atmosphere of Russian Regions and Their Contribution to Climate Change in the 21st Century Evaluated with the CMIP6 Model Ensemble Influence of Modeling Conditions on the Estimation of the Dry Deposition Velocity of Aerosols on Highly Inhomogeneous Surfaces Dynamics of Air Temperature Changes in the Atmospheric Boundary Layer during the Solar Eclipse of March 29, 2006 Analysis of Noctilucent Cloud Fields According to Ground-Based Network and Airborne Photography Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1