G. A. Bush, N. F. Elansky, E. N. Kadyrov, S. N. Kulichkov, I. P. Chunchuzov, N. S. Prokosheva
{"title":"Dynamics of Air Temperature Changes in the Atmospheric Boundary Layer during the Solar Eclipse of March 29, 2006","authors":"G. A. Bush, N. F. Elansky, E. N. Kadyrov, S. N. Kulichkov, I. P. Chunchuzov, N. S. Prokosheva","doi":"10.1134/s0001433824700129","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The data of measurements of air temperature profiles in the atmospheric boundary layer (ABL) during the total solar eclipse on March 29, 2006, in Kislovodsk and at the High-Mountain Scientific Station (HMSS) on the central shadow line are presented. The solar eclipse lasted from 2:08 p.m. to 4:27 p.m. local time; the total phase of the eclipse began at 3:15 p.m. and lasted 2 min 32 s. In developing the results we obtained in our previous work, we compared the data on air temperature profiles at two points, Kislovodsk and the HMSS. The influence of local conditions has been studied. It is shown that local conditions significantly affect both the amplitude of atmospheric pressure pulsations caused by a solar eclipse and their phase, as well as the nature of the change in the spectral density of air temperature with height in the range of periods corresponding to the duration of the solar eclipse. Based on the measurements of temperature profiles, the fluctuations of the atmospheric pressure difference at the level of the earth’s surface and at a certain height up to which the temperature profiles were measured equal to 600 m, were reconstructed, caused by a solar eclipse, in coordinates: height–time has different trajectories in the case of Kislovodsk and the HMSS. The difference in the trajectories of air temperature minima in Kislovodsk and at the HMSS determines both different delays in pressure minima relative to the beginning of the eclipse and time delays between surface pressure fluctuations at observation points as a whole. Also, a new method is proposed for determining the speed of ascending air currents using data on the altitude dependence of the time of reaching a minimum in temporal temperature variations caused by a solar eclipse. The changes in the spectral density of air are compared with height, the amplitude of the reconstructed atmospheric pressure pulsations in Kislovodsk and at the HMSS, and the speed of ascending air currents.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433824700129","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The data of measurements of air temperature profiles in the atmospheric boundary layer (ABL) during the total solar eclipse on March 29, 2006, in Kislovodsk and at the High-Mountain Scientific Station (HMSS) on the central shadow line are presented. The solar eclipse lasted from 2:08 p.m. to 4:27 p.m. local time; the total phase of the eclipse began at 3:15 p.m. and lasted 2 min 32 s. In developing the results we obtained in our previous work, we compared the data on air temperature profiles at two points, Kislovodsk and the HMSS. The influence of local conditions has been studied. It is shown that local conditions significantly affect both the amplitude of atmospheric pressure pulsations caused by a solar eclipse and their phase, as well as the nature of the change in the spectral density of air temperature with height in the range of periods corresponding to the duration of the solar eclipse. Based on the measurements of temperature profiles, the fluctuations of the atmospheric pressure difference at the level of the earth’s surface and at a certain height up to which the temperature profiles were measured equal to 600 m, were reconstructed, caused by a solar eclipse, in coordinates: height–time has different trajectories in the case of Kislovodsk and the HMSS. The difference in the trajectories of air temperature minima in Kislovodsk and at the HMSS determines both different delays in pressure minima relative to the beginning of the eclipse and time delays between surface pressure fluctuations at observation points as a whole. Also, a new method is proposed for determining the speed of ascending air currents using data on the altitude dependence of the time of reaching a minimum in temporal temperature variations caused by a solar eclipse. The changes in the spectral density of air are compared with height, the amplitude of the reconstructed atmospheric pressure pulsations in Kislovodsk and at the HMSS, and the speed of ascending air currents.
期刊介绍:
Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.