A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe3+ ion detection

IF 5.7 3区 材料科学 Q2 Materials Science New Carbon Materials Pub Date : 2023-12-01 DOI:10.1016/S1872-5805(23)60706-1
Zhong-fu Cheng , Xue-yan Wu , Lei Liu , Long He , Zu-guo Yang , Chang Cao , Yan Lu , Ji-xi Guo
{"title":"A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe3+ ion detection","authors":"Zhong-fu Cheng ,&nbsp;Xue-yan Wu ,&nbsp;Lei Liu ,&nbsp;Long He ,&nbsp;Zu-guo Yang ,&nbsp;Chang Cao ,&nbsp;Yan Lu ,&nbsp;Ji-xi Guo","doi":"10.1016/S1872-5805(23)60706-1","DOIUrl":null,"url":null,"abstract":"<div><p>We report a method for the of coal-based fluorescent carbon dots (CDs) at room temperature using a mixture of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and formic acid (HCOOH) as the oxidant instead of concentrated HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>. The CDs have an excitation dependent behavior with a high quantum yield (QY) of approximately 7.2%. The CDs are water soluble and have excellent photo-stability, good resistance to salt solutions, and are insensitive to pH in a range of 2.0-12.0. The CDs were used as a very sensitive probe for the turn-off sensing of Fe<sup>3+</sup> ion with a detection limit as low as 600 nmol/L and a detection range from 2 to 100 μmol/L. This work provides a way for the high value-added utilization of coal.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607061","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

We report a method for the of coal-based fluorescent carbon dots (CDs) at room temperature using a mixture of hydrogen peroxide (H2O2) and formic acid (HCOOH) as the oxidant instead of concentrated HNO3 or H2SO4. The CDs have an excitation dependent behavior with a high quantum yield (QY) of approximately 7.2%. The CDs are water soluble and have excellent photo-stability, good resistance to salt solutions, and are insensitive to pH in a range of 2.0-12.0. The CDs were used as a very sensitive probe for the turn-off sensing of Fe3+ ion with a detection limit as low as 600 nmol/L and a detection range from 2 to 100 μmol/L. This work provides a way for the high value-added utilization of coal.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
煤基水溶性荧光碳点的高效、快速、室温合成方法及其在 Fe3+ 离子检测中的应用
我们报告了一种在室温下利用过氧化氢(H2O2)和甲酸(HCOOH)的混合物作为氧化剂而不是浓 HNO3 或 H2SO4 来制备煤基荧光碳点(CD)的方法。这种 CD 具有与激发相关的特性,量子产率(QY)高达约 7.2%。这种光盘可溶于水,具有出色的光稳定性和良好的耐盐溶液性,对 pH 值(2.0-12.0)不敏感。这种 CD 被用作一种非常灵敏的探针,用于 Fe3+ 离子的关断感应,其检测限低至 600 nmol/L,检测范围为 2 至 100 μmol/L。这项工作为煤炭的高附加值利用提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
期刊最新文献
A review of hard carbon anodes for rechargeable sodium-ion batteries Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries Design, progress and challenges of 3D carbon-based thermally conductive networks The application of metal–organic frameworks and their derivatives for lithium-ion capacitors A review of the carbon coating of the silicon anode in high-performance lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1