Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60865-6
Yan-ting Lang , Yu He , Huai-he Song , Li-ming Yi , Hai-jun Deng , Xiao-hong Chen
Photothermal conversion is the process of converting solar energy into thermal energy which allows for the use of solar energy, a clean and renewable resource, to alleviate energy scarcity. Carbon aerogel materials with a highly developed pore structure, excellent light capture, and high photothermal conversion efficiency are currently an important research topic in the field of photothermal conversion. The principles of photothermal conversion for various photothermal materials are outlined and research progress on different types of carbon aerogels, including graphene, carbon nanotube, biomass-based carbon, and polymer-based carbon aerogels, as photothermal materials. The use of carbon aerogels as photothermal materials in solar water evaporation, thermal energy storage, photothermal catalysis, photothermal therapy, and photothermal de-icing are then introduced.
{"title":"Progress in the research of carbon aerogel in photothermal conversion","authors":"Yan-ting Lang , Yu He , Huai-he Song , Li-ming Yi , Hai-jun Deng , Xiao-hong Chen","doi":"10.1016/S1872-5805(24)60865-6","DOIUrl":"10.1016/S1872-5805(24)60865-6","url":null,"abstract":"<div><div>Photothermal conversion is the process of converting solar energy into thermal energy which allows for the use of solar energy, a clean and renewable resource, to alleviate energy scarcity. Carbon aerogel materials with a highly developed pore structure, excellent light capture, and high photothermal conversion efficiency are currently an important research topic in the field of photothermal conversion. The principles of photothermal conversion for various photothermal materials are outlined and research progress on different types of carbon aerogels, including graphene, carbon nanotube, biomass-based carbon, and polymer-based carbon aerogels, as photothermal materials. The use of carbon aerogels as photothermal materials in solar water evaporation, thermal energy storage, photothermal catalysis, photothermal therapy, and photothermal de-icing are then introduced.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1075-1087"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60892-9
Ling Bai , Qian Liu , Tao Hong , Hao-ran Li , Fang-yuan Zhu , Hai-gang Liu , Zi-quan Li , Zhen-dong Huang
Carbon with its high electrical conductivity, excellent chemical stability, and structure ability is the most promising anode material for sodium and potassium ion batteries. We developed a defect-rich porous carbon framework (DRPCF) built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C3N4 (PCN) and dopamine (DA) as raw materials. We prepared samples with PCN/DA mass ratios of 1/1, 2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700 °C in an Ar atmosphere (DRPCF-2/1-700), had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites. Because of this, it had the best pseudocapacitive sodium and potassium ion storage performance. A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g−1 after being cycled at 1 A g−1 for 900 cycles, and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g−1 after being cycled at 1 A g−1 for 1 200 cycles. The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials. Finally, ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K+ and Na+ from the electrochemically active defects are responsible for the high capacity, superior rate and cycling performance of the DRPCF-2/1-700 sample.
{"title":"Defect-rich N/O-co-doped porous carbon frameworks as anodes for superior potassium and sodium-ion batteries","authors":"Ling Bai , Qian Liu , Tao Hong , Hao-ran Li , Fang-yuan Zhu , Hai-gang Liu , Zi-quan Li , Zhen-dong Huang","doi":"10.1016/S1872-5805(24)60892-9","DOIUrl":"10.1016/S1872-5805(24)60892-9","url":null,"abstract":"<div><div>Carbon with its high electrical conductivity, excellent chemical stability, and structure ability is the most promising anode material for sodium and potassium ion batteries. We developed a defect-rich porous carbon framework (DRPCF) built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C<sub>3</sub>N<sub>4</sub> (PCN) and dopamine (DA) as raw materials. We prepared samples with PCN/DA mass ratios of 1/1, 2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700 °C in an Ar atmosphere (DRPCF-2/1-700), had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites. Because of this, it had the best pseudocapacitive sodium and potassium ion storage performance. A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g<sup>−1</sup> after being cycled at 1 A g<sup>−1</sup> for 900 cycles, and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g<sup>−1</sup> after being cycled at 1 A g<sup>−1</sup> for 1 200 cycles. The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials. Finally, ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K<sup>+</sup> and Na<sup>+</sup> from the electrochemically active defects are responsible for the high capacity, superior rate and cycling performance of the DRPCF-2/1-700 sample.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1144-1156"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60868-1
Ming-chi Jiang, Ning Sun, Jia-xu Yu, Ti-zheng Wang, Razium Ali Somoro, Meng-qiu Jia, Bin Xu
Potassium-ion batteries (PIBs) hold promise for large-scale energy storage, necessitating the development of high-performance anode materials. Carbons with the advantage of structural versatility, are recognized as the most promising anode materials for their commercialization, however the relationship between the carbon anode structure and its electrochemical performance remains unclear. A series of pitch-based soft carbons with different structures were fabricated using carbonization temperatures in the range 600–1400 °C, and their changes in carbon configuration and K-storage performance as a function of carbonization temperature were investigated. Correlations between the carbon crystal size and the low-potential plateau region capacity and between the degree of structural disorder of the carbons with their sloping region capacity were revealed. Among all samples, that obtained by carbonization at 700 °C had a relatively high degree of disorder and a large interlayer spacing, and had a high reversible capacity of 329.4 mAh g−1 with a high initial coulombic efficiency of 72.81%, and maintained a high capacity of 144.2 mAh g−1 at the current rate of 5 C. These findings improve our fundamental understanding of the K-storage process in carbon anodes, and thus facilitate the advance of PIBs.
{"title":"Synthesis of pitch-derived carbon anodes for high-performance potassium-ion batteries","authors":"Ming-chi Jiang, Ning Sun, Jia-xu Yu, Ti-zheng Wang, Razium Ali Somoro, Meng-qiu Jia, Bin Xu","doi":"10.1016/S1872-5805(24)60868-1","DOIUrl":"10.1016/S1872-5805(24)60868-1","url":null,"abstract":"<div><div>Potassium-ion batteries (PIBs) hold promise for large-scale energy storage, necessitating the development of high-performance anode materials. Carbons with the advantage of structural versatility, are recognized as the most promising anode materials for their commercialization, however the relationship between the carbon anode structure and its electrochemical performance remains unclear. A series of pitch-based soft carbons with different structures were fabricated using carbonization temperatures in the range 600–1400 °C, and their changes in carbon configuration and K-storage performance as a function of carbonization temperature were investigated. Correlations between the carbon crystal size and the low-potential plateau region capacity and between the degree of structural disorder of the carbons with their sloping region capacity were revealed. Among all samples, that obtained by carbonization at 700 °C had a relatively high degree of disorder and a large interlayer spacing, and had a high reversible capacity of 329.4 mAh g<sup>−1</sup> with a high initial coulombic efficiency of 72.81%, and maintained a high capacity of 144.2 mAh g<sup>−1</sup> at the current rate of 5 C. These findings improve our fundamental understanding of the K-storage process in carbon anodes, and thus facilitate the advance of PIBs.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1117-1127"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60869-3
Jia-jia Xue, Mei-heng Gan, Yong-gen Lu, Qi-lin Wu
Using simple and eco-friendly ethanol solvothermal treatment, dual-emission biomass carbon quantum dots (D-BCQDs) were synthesized from biomass viburnum awabuki leaves. Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson, red, purplish red, purple and blue-gray fluorescence by changing the solvothermal temperature from 140 °C to 160, 180, 200 and 240 °C, respectively. XPS and FTIR characterization indicated that the fluorescence color was mainly determined by surface oxidation defects, elemental nitrogen and sp2-C/sp3-C hybridized structural domains. The D-BCQDs could not only detect Fe3+ or Cu2+, but also quantify the concentration ratio of Fe3+ to Cu2+ in a solution containing both, demonstrating their potential applications in the simultaneous detection of Fe3+ and Cu2+ ions.
{"title":"Fluorescence color tuning of dual-emission carbon quantum dots produced from biomass and their use in Fe3+ and Cu2+ detection","authors":"Jia-jia Xue, Mei-heng Gan, Yong-gen Lu, Qi-lin Wu","doi":"10.1016/S1872-5805(24)60869-3","DOIUrl":"10.1016/S1872-5805(24)60869-3","url":null,"abstract":"<div><div>Using simple and eco-friendly ethanol solvothermal treatment, dual-emission biomass carbon quantum dots (D-BCQDs) were synthesized from biomass viburnum awabuki leaves. Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson, red, purplish red, purple and blue-gray fluorescence by changing the solvothermal temperature from 140 °C to 160, 180, 200 and 240 °C, respectively. XPS and FTIR characterization indicated that the fluorescence color was mainly determined by surface oxidation defects, elemental nitrogen and sp<sup>2</sup>-C/sp<sup>3</sup>-C hybridized structural domains. The D-BCQDs could not only detect Fe<sup>3+</sup> or Cu<sup>2+</sup>, but also quantify the concentration ratio of Fe<sup>3+</sup> to Cu<sup>2+</sup> in a solution containing both, demonstrating their potential applications in the simultaneous detection of Fe<sup>3+</sup> and Cu<sup>2+</sup> ions.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1213-1226"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143311675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60893-0
Wen-fang Fang , Jing-chao Yuan , Meng-qian Wang , Yu-qing Peng , Dan Zhang , Ai-jun Li
The intrinsic deposition rate of pyrolytic carbon from propylene was studied using a chemical vapor infiltration hot wall reactor at partial pressures of propylene from 3 kPa to 7 kPa, temperatures of 1 173 to 1 273 K, and a residence time of 1.1 s. The effect of the partial pressure of hydrogen on carbon deposition rate at different temperatures was studied at constant propylene partial pressures. A model of the deposition mechanism of propylene was established. The results show that the propylene deposition rate increases with increasing partial pressure, increased distance along the path and increasing temperature. Hydrogen inhibits the deposition. The deposition mechanism model shows that the reciprocal of the propylene deposition rate is linear with the reciprocal of the propylene concentration, and the reciprocal of the propylene deposition rate is linear with the hydrogen concentration. Comparing the experimental results of propylene deposition rate, the rationality of the model is proved and the kinetic parameters are calculated.
{"title":"Modeling of pyrolytic carbon deposition from propylene","authors":"Wen-fang Fang , Jing-chao Yuan , Meng-qian Wang , Yu-qing Peng , Dan Zhang , Ai-jun Li","doi":"10.1016/S1872-5805(24)60893-0","DOIUrl":"10.1016/S1872-5805(24)60893-0","url":null,"abstract":"<div><div>The intrinsic deposition rate of pyrolytic carbon from propylene was studied using a chemical vapor infiltration hot wall reactor at partial pressures of propylene from 3 kPa to 7 kPa, temperatures of 1 173 to 1 273 K, and a residence time of 1.1 s. The effect of the partial pressure of hydrogen on carbon deposition rate at different temperatures was studied at constant propylene partial pressures. A model of the deposition mechanism of propylene was established. The results show that the propylene deposition rate increases with increasing partial pressure, increased distance along the path and increasing temperature. Hydrogen inhibits the deposition. The deposition mechanism model shows that the reciprocal of the propylene deposition rate is linear with the reciprocal of the propylene concentration, and the reciprocal of the propylene deposition rate is linear with the hydrogen concentration. Comparing the experimental results of propylene deposition rate, the rationality of the model is proved and the kinetic parameters are calculated.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1243-1248"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60889-9
Fan Feng , Zhi-dong Han , Bing Wei , Yang Wang , Fei-zhou Wang , Yan-yan Jiao , Zhen-ting Wang
During the operation of electronic devices, a considerable amount of heat and electromagnetic radiation is emitted. Therefore, the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance. Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes (CNTs) and SiC whiskers (3D graphene-CNT-SiC) were synthesized. Using an aqueous-phase reduction method for the self-assembly of the graphene oxide, a three-dimensional porous graphene structure was fabricated. SiC whiskers, inserted between the graphene layers, formed a framework for longitudinal thermal conduction, while CNTs attached to the SiC surface, created a dendritic structure that increased the bonding between the SiC whiskers and graphene, improving dielectric loss and thermal conductivity. It was found that the thermal conductivity of the hybrid material reached 123 W·m–1·K–1, with a shielding effectiveness of 29.3 dB when the SiC addition was 2%. This result indicates that 3D Graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.
{"title":"Increasing both the electromagnetic shielding and thermal conductive properties of three-dimensional graphene-CNT-SiC hybrid materials","authors":"Fan Feng , Zhi-dong Han , Bing Wei , Yang Wang , Fei-zhou Wang , Yan-yan Jiao , Zhen-ting Wang","doi":"10.1016/S1872-5805(24)60889-9","DOIUrl":"10.1016/S1872-5805(24)60889-9","url":null,"abstract":"<div><div>During the operation of electronic devices, a considerable amount of heat and electromagnetic radiation is emitted. Therefore, the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance. Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes (CNTs) and SiC whiskers (3D graphene-CNT-SiC) were synthesized. Using an aqueous-phase reduction method for the self-assembly of the graphene oxide, a three-dimensional porous graphene structure was fabricated. SiC whiskers, inserted between the graphene layers, formed a framework for longitudinal thermal conduction, while CNTs attached to the SiC surface, created a dendritic structure that increased the bonding between the SiC whiskers and graphene, improving dielectric loss and thermal conductivity. It was found that the thermal conductivity of the hybrid material reached 123 W·m<sup>–1</sup>·K<sup>–1</sup>, with a shielding effectiveness of 29.3 dB when the SiC addition was 2%. This result indicates that 3D Graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1178-1190"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60878-4
Yao-ming Song , Shi-xin Qiu , Shu-xin Feng , Rui Zuo , Ya-ting Zhang , Ke Jia , Xue Xia , Ming-ming Chen , Ke-meng Ji , Cheng-yang Wang
The quest for sustainable energy storage solutions is more critical than ever, with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources. Carbon nanotubes (CNTs), with their exceptional electrical conductivity and structural integrity, are at the forefront of this endeavor, offering promising ways for the advance of electrochemical energy storage (EES) devices. This review provides an analysis of the synthesis, properties, and applications of CNTs in the context of EES. We explore the evolution of CNT synthesis methods, including arc discharge, laser ablation, and chemical vapor deposition, and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure. We also examine the role of CNTs in improving the performance of various EES devices such as lithium-ion, lithium-metal, lithium-sulfur, sodium, and flexible batteries as well as supercapacitors. We underscore the challenges that remain, including the scalability of CNT synthesis and the integration of CNTs in electrode materials, and propose potential solutions and future research directions. The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the future of sustainable EES technologies.
{"title":"A review of carbon nanotubes in modern electrochemical energy storage","authors":"Yao-ming Song , Shi-xin Qiu , Shu-xin Feng , Rui Zuo , Ya-ting Zhang , Ke Jia , Xue Xia , Ming-ming Chen , Ke-meng Ji , Cheng-yang Wang","doi":"10.1016/S1872-5805(24)60878-4","DOIUrl":"10.1016/S1872-5805(24)60878-4","url":null,"abstract":"<div><div>The quest for sustainable energy storage solutions is more critical than ever, with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources. Carbon nanotubes (CNTs), with their exceptional electrical conductivity and structural integrity, are at the forefront of this endeavor, offering promising ways for the advance of electrochemical energy storage (EES) devices. This review provides an analysis of the synthesis, properties, and applications of CNTs in the context of EES. We explore the evolution of CNT synthesis methods, including arc discharge, laser ablation, and chemical vapor deposition, and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure. We also examine the role of CNTs in improving the performance of various EES devices such as lithium-ion, lithium-metal, lithium-sulfur, sodium, and flexible batteries as well as supercapacitors. We underscore the challenges that remain, including the scalability of CNT synthesis and the integration of CNTs in electrode materials, and propose potential solutions and future research directions. The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the future of sustainable EES technologies.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1037-1074"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60890-5
Zhi-wen Chen , Jing Ren , Jun Qiao , Jian-guo Zhao , Jing-wei Li , Ze-hui Liu , Wei-jia Li , Bao-yan Xing , Jin Zhang , Hui Nie
The effect of functionalized graphene on the growth and development of Vicia faba L. was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil. Seedlings of V. faba planted in this peat soil were treated with either distilled water (CK) or 25 mg·L−1 (G25) of functionalized graphene solution. Results showed that the height and root length of V. faba seedlings in the G25 group were significantly larger than those in CK group. The microbial community was analyzed by amplifying and sequencing the 16S rRNA gene V3–V4 region of bacteria and internal transcribed spacer region of fungi in rhizosphere soil using Illumina MiSeq technology. Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V. faba rhizosphere peat soil. The abundances of three nitrogen cycling-related bacteria, Hydrogenophaga, Sphingomonas and Nitrosomonadaceae, were also altered after treatment with the functionalized graphene. The relative abundance of Basilicum, related to soil phosphorus solubilization, decreased in the fungal community, while the relative abundance of Clonostachys and Dimorphospora, which exhibited strong biological control over numerous fungal plant pathogens, nematodes and insects, increased in the soil after functionalized graphene treatment. Redundancy analysis revealed that the potential of hydrogen (pH), organic matter, and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil. Overall, our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil, promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V. faba plants.
{"title":"Influence of functionalized graphene on the bacterial and fungal diversity of Vicia faba rhizosphere soil","authors":"Zhi-wen Chen , Jing Ren , Jun Qiao , Jian-guo Zhao , Jing-wei Li , Ze-hui Liu , Wei-jia Li , Bao-yan Xing , Jin Zhang , Hui Nie","doi":"10.1016/S1872-5805(24)60890-5","DOIUrl":"10.1016/S1872-5805(24)60890-5","url":null,"abstract":"<div><div>The effect of functionalized graphene on the growth and development of <em>Vicia faba</em> L. was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil. Seedlings of <em>V. faba</em> planted in this peat soil were treated with either distilled water (CK) or 25 mg·L<sup>−1</sup> (G25) of functionalized graphene solution. Results showed that the height and root length of <em>V. faba</em> seedlings in the G25 group were significantly larger than those in CK group. The microbial community was analyzed by amplifying and sequencing the 16S rRNA gene V3–V4 region of bacteria and internal transcribed spacer region of fungi in rhizosphere soil using Illumina MiSeq technology. Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the <em>V. faba</em> rhizosphere peat soil. The abundances of three nitrogen cycling-related bacteria, <em>Hydrogenophaga</em>, <em>Sphingomonas</em> and <em>Nitrosomonadaceae</em>, were also altered after treatment with the functionalized graphene. The relative abundance of <em>Basilicum</em>, related to soil phosphorus solubilization, decreased in the fungal community, while the relative abundance of <em>Clonostachys</em> and <em>Dimorphospora</em>, which exhibited strong biological control over numerous fungal plant pathogens, nematodes and insects, increased in the soil after functionalized graphene treatment. Redundancy analysis revealed that the potential of hydrogen (pH), organic matter, and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil. Overall, our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil, promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of <em>V. faba</em> plants.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1227-1242"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143311676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60891-7
Gargi Dhiman , Kavita Kumari , Bon-Heun Koo , Faheem Ahmed , Nagih M. Shaalan , Saurabh Dalela , Parvez A. Alvi , Ranjeet Kumar Brajpuriya , Shalendra Kumar
We report an economical approach for the fabrication of laser-produced graphene (LPG) electrodes, which results in an improved electrochemical performance. Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO2 laser. The prepared LPG samples were characterized by Raman spectroscopy and FTIR, which validated the formation of multilayer graphene containing sp2 hybridized C=C bonds. FE-SEM revealed three-dimensional (3D) sheet-like structures, while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm, corresponding to the (002) plane of graphene. Their electrochemical performance showed a remarkable areal specific capacitance (CA) of 51 mF cm−2 (170 F g−1) at 1 mA cm−2 (3.3 A g−1) in a three-electrode configuration with 1 mol L−1 KOH as the aqueous electrolyte. The LPG electrodes produced an energy density of ~3.5 µWh cm−2 and a power density of ~350 µW cm−2, demonstrating significant energy storage ability. They also had an excellent cycling stability, retaining 87% of their specific capacitance after 3 000 cycles at 1 mA/cm2. A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L−1 KOH electrolyte had a specific capacitance of 23 mF cm−2 and showed excellent retention after 10 000 cycles, showing LPG's potential for use in supercapacitors.
{"title":"Electrochemical performance of a symmetric supercapacitor device designed using laser-produced multilayer graphene","authors":"Gargi Dhiman , Kavita Kumari , Bon-Heun Koo , Faheem Ahmed , Nagih M. Shaalan , Saurabh Dalela , Parvez A. Alvi , Ranjeet Kumar Brajpuriya , Shalendra Kumar","doi":"10.1016/S1872-5805(24)60891-7","DOIUrl":"10.1016/S1872-5805(24)60891-7","url":null,"abstract":"<div><div>We report an economical approach for the fabrication of laser-produced graphene (LPG) electrodes, which results in an improved electrochemical performance. Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO<sub>2</sub> laser. The prepared LPG samples were characterized by Raman spectroscopy and FTIR, which validated the formation of multilayer graphene containing sp<sup>2</sup> hybridized C=C bonds. FE-SEM revealed three-dimensional (3D) sheet-like structures, while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm, corresponding to the (002) plane of graphene. Their electrochemical performance showed a remarkable areal specific capacitance (<em>C</em><sub>A</sub>) of 51 mF cm<sup>−2</sup> (170 F g<sup>−1</sup>) at 1 mA cm<sup>−2</sup> (3.3 A g<sup>−1</sup>) in a three-electrode configuration with 1 mol L<sup>−1</sup> KOH as the aqueous electrolyte. The LPG electrodes produced an energy density of ~3.5 µWh cm<sup>−2</sup> and a power density of ~350 µW cm<sup>−2</sup>, demonstrating significant energy storage ability. They also had an excellent cycling stability, retaining 87% of their specific capacitance after 3 000 cycles at 1 mA/cm<sup>2</sup>. A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L<sup>−1</sup> KOH electrolyte had a specific capacitance of 23 mF cm<sup>−2</sup> and showed excellent retention after 10 000 cycles, showing LPG's potential for use in supercapacitors.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1128-1143"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143311674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/S1872-5805(24)60885-1
Tan Yi , Jun-long Huang , Zong-heng Cen , Yi-wei Ji , Shao-hong Liu
Carbon-based catalysts are promising materials for the electrochemical extraction of uranium from seawater. However, their practical application is often limited by high cost and low catalytic activity. Using low-cost polystyrene sulfonic acid resin and melamine as raw materials, a class of nitrogen and sulfur co-doped carbon nanosheets (CNSs) with high catalytic activity has been developed by a low-temperature hydrothermal treatment and high-temperature carbonization. Because of their high conductivity and high catalytic activity, CNS-based electrodes can catalyze uranyl ions in seawater into easily recoverable Na2O(UO3·H2O)x precipitates at −2 V, and achieve an extraction capacity of up to 3 923.7 mg g−1 with a uranium removal of 98.1% in uranium-spiked seawater (1×103 mg L−1). In situ Raman spectroscopy showed that a large number of uranium compounds appeared on the surface of the composite electrode within 40 min of extraction. The electrode also recovered 72.7% of the uranium in natural seawater, demonstrating excellent prospects for this application. This work provides a new approach into the design of low-cost, metal-free electrocatalysts for the efficient uranium extraction from natural seawater.
{"title":"N/S co-doped carbon nanosheets for the efficient electrochemical extraction of uranium from seawater","authors":"Tan Yi , Jun-long Huang , Zong-heng Cen , Yi-wei Ji , Shao-hong Liu","doi":"10.1016/S1872-5805(24)60885-1","DOIUrl":"10.1016/S1872-5805(24)60885-1","url":null,"abstract":"<div><div>Carbon-based catalysts are promising materials for the electrochemical extraction of uranium from seawater. However, their practical application is often limited by high cost and low catalytic activity. Using low-cost polystyrene sulfonic acid resin and melamine as raw materials, a class of nitrogen and sulfur co-doped carbon nanosheets (CNSs) with high catalytic activity has been developed by a low-temperature hydrothermal treatment and high-temperature carbonization. Because of their high conductivity and high catalytic activity, CNS-based electrodes can catalyze uranyl ions in seawater into easily recoverable Na<sub>2</sub>O(UO<sub>3</sub>·H<sub>2</sub>O)<sub><em>x</em></sub> precipitates at −2 V, and achieve an extraction capacity of up to 3 923.7 mg g<sup>−1</sup> with a uranium removal of 98.1% in uranium-spiked seawater (1×10<sup>3</sup> mg L<sup>−1</sup>). In situ Raman spectroscopy showed that a large number of uranium compounds appeared on the surface of the composite electrode within 40 min of extraction. The electrode also recovered 72.7% of the uranium in natural seawater, demonstrating excellent prospects for this application. This work provides a new approach into the design of low-cost, metal-free electrocatalysts for the efficient uranium extraction from natural seawater.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1108-1116"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}