Xiao-gang Che , Jiao Jin , Yi-xiao Zhang , Si-yu Liu , Man Wang , Juan Yang
{"title":"Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors","authors":"Xiao-gang Che , Jiao Jin , Yi-xiao Zhang , Si-yu Liu , Man Wang , Juan Yang","doi":"10.1016/S1872-5805(23)60752-8","DOIUrl":null,"url":null,"abstract":"<div><p>The modification and optimization of porous carbon electrodes is key to achieving high-performance supercapacitors. Oxygen-rich porous carbon nanosheets (OPCNs) with a two-dimensional (2D) structure produced from the solid by-products of the coal industry were prepared by taking advantage of the rigid confinement of 2D MgAl-layered double hydroxides (MgAl-LDH) combined with KOH activation. The influence of carbonization temperature on the microstructure and surface properties of the OPCNs was investigated. The surface morphologies/compositions and surface textures of the prepared OPCNs were observed and analyzed by SEM, TEM, N2 adsorption and desorption, elemental analysis, etc. The optimized carbon sample activated at 700 °C (OPCN-700) had a high oxygen content of 24.4 wt%, a large specific surface area of 2 388 m2 g−1, and good wettability. In addition, the abundant micropores and 2D nanosheet structure of OPCN-700 provide efficient storage and transport for electrolyte ions. Because of this, when used as the electrode for a supercapacitor it has a high specific capacitance of 382 F g−1 at 0.5 A g−1, an excellent rate performance and cycling stability.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 6","pages":"Pages 1050-1058"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607528","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The modification and optimization of porous carbon electrodes is key to achieving high-performance supercapacitors. Oxygen-rich porous carbon nanosheets (OPCNs) with a two-dimensional (2D) structure produced from the solid by-products of the coal industry were prepared by taking advantage of the rigid confinement of 2D MgAl-layered double hydroxides (MgAl-LDH) combined with KOH activation. The influence of carbonization temperature on the microstructure and surface properties of the OPCNs was investigated. The surface morphologies/compositions and surface textures of the prepared OPCNs were observed and analyzed by SEM, TEM, N2 adsorption and desorption, elemental analysis, etc. The optimized carbon sample activated at 700 °C (OPCN-700) had a high oxygen content of 24.4 wt%, a large specific surface area of 2 388 m2 g−1, and good wettability. In addition, the abundant micropores and 2D nanosheet structure of OPCN-700 provide efficient storage and transport for electrolyte ions. Because of this, when used as the electrode for a supercapacitor it has a high specific capacitance of 382 F g−1 at 0.5 A g−1, an excellent rate performance and cycling stability.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.