Romain Attal , Ashraf Bakkar , Frédéric Bouillaud , Anne Devin , Marc Henry , Maxime Pontié , Miroslav Radman , Laurent Schwartz
{"title":"From electrons to cancer : Redox shift as a driving force of tumorigenesis","authors":"Romain Attal , Ashraf Bakkar , Frédéric Bouillaud , Anne Devin , Marc Henry , Maxime Pontié , Miroslav Radman , Laurent Schwartz","doi":"10.1016/j.arres.2023.100087","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer cells are very diverse but mostly share a common metabolic property: they are strongly glycolytic even though oxygen is available. Herein, the metabolic abnormalities of cancer cells are interpreted as modifications of the electric currents in redox reactions. A lower current in the electron transport chain, an increase of the concentration of reduced cofactors and a partial reversal of the tricarboxylic acid cycle are physical characteristics of several forms of cancer. The existence of electric short-circuits between oxidative branches and reductive branches of the metabolic network argue in favor of an electronic approach of cancer in the nanoscopic scale. These changes of electron flows induce a pseudo-hypoxia and the Warburg effect through succinate production and divert electrons from oxygen to biosynthetic pathways. This new look at cancer may have potential therapeutic applications.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"10 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137923000279/pdfft?md5=4c1d2f8af45c7c1621b020937a9b41c9&pid=1-s2.0-S2667137923000279-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667137923000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer cells are very diverse but mostly share a common metabolic property: they are strongly glycolytic even though oxygen is available. Herein, the metabolic abnormalities of cancer cells are interpreted as modifications of the electric currents in redox reactions. A lower current in the electron transport chain, an increase of the concentration of reduced cofactors and a partial reversal of the tricarboxylic acid cycle are physical characteristics of several forms of cancer. The existence of electric short-circuits between oxidative branches and reductive branches of the metabolic network argue in favor of an electronic approach of cancer in the nanoscopic scale. These changes of electron flows induce a pseudo-hypoxia and the Warburg effect through succinate production and divert electrons from oxygen to biosynthetic pathways. This new look at cancer may have potential therapeutic applications.