Impact of Specific PM2.5 Contaminant on Monolayer/Bilayer ArGNR

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2023-11-24 DOI:10.1109/OJNANO.2023.3336366
Kamal Solanki;Swati Verma;Punya Prasanna Paltani;Manoj Kumar Majumder
{"title":"Impact of Specific PM2.5 Contaminant on Monolayer/Bilayer ArGNR","authors":"Kamal Solanki;Swati Verma;Punya Prasanna Paltani;Manoj Kumar Majumder","doi":"10.1109/OJNANO.2023.3336366","DOIUrl":null,"url":null,"abstract":"Elevated Particular Matter (PM\n<sub>2.5</sub>\n) may increase the risk of acquiring hazardous health implications, and hence high-performance monitoring of minuscule contaminants might protect people's health. The adsorption behaviour of specific PM\n<sub>2.5</sub>\n contaminants on doped/undoped monolayer/bilayer armchair graphene nanoribbon (ArGNR) is analyzed using a hydrogen-passivated layer. By using the first-principles density functional theory (DFT), the influence of doping on the ArGNR substrate is carefully examined. Due to the fragile surface atoms, monolayer ArGNR exhibits roughly twice the adsorption energy compared to the bilayer configuration. However, the specific PM\n<sub>2.5</sub>\n contaminants, the CH\n<sub>4</sub>\n, NH\n<sub>3</sub>\n, and NO\n<sub>2</sub>\n molecules demonstrate chemisorption of −2 eV,−2.95 eV, and −4 eV, with extremely less bandgap variation of −65% to −70% and −100% and a gigantic amount of charge transfer of +0.153 eV, +0.156 eV and +0.010 eV, and the DOS peaks at B site are \n<inline-formula><tex-math>$ \\pm 110\\,\\text{eV}, \\pm 65{\\rm{ eV}}, \\pm 80{\\rm{ eV}}$</tex-math></inline-formula>\n, and at the P site are \n<inline-formula><tex-math>$ \\pm 130$</tex-math></inline-formula>\n eV, \n<inline-formula><tex-math>$ \\pm 300$</tex-math></inline-formula>\n eV and \n<inline-formula><tex-math>$ \\pm 80$</tex-math></inline-formula>\n eV on boron-phosphorus (BP) co-doped monolayer ArGNR, for CH\n<sub>4</sub>\n, NH\n<sub>3,</sub>\n and NO\n<sub>2</sub>\n, respectively.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"215-228"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328676","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10328676/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated Particular Matter (PM 2.5 ) may increase the risk of acquiring hazardous health implications, and hence high-performance monitoring of minuscule contaminants might protect people's health. The adsorption behaviour of specific PM 2.5 contaminants on doped/undoped monolayer/bilayer armchair graphene nanoribbon (ArGNR) is analyzed using a hydrogen-passivated layer. By using the first-principles density functional theory (DFT), the influence of doping on the ArGNR substrate is carefully examined. Due to the fragile surface atoms, monolayer ArGNR exhibits roughly twice the adsorption energy compared to the bilayer configuration. However, the specific PM 2.5 contaminants, the CH 4 , NH 3 , and NO 2 molecules demonstrate chemisorption of −2 eV,−2.95 eV, and −4 eV, with extremely less bandgap variation of −65% to −70% and −100% and a gigantic amount of charge transfer of +0.153 eV, +0.156 eV and +0.010 eV, and the DOS peaks at B site are $ \pm 110\,\text{eV}, \pm 65{\rm{ eV}}, \pm 80{\rm{ eV}}$ , and at the P site are $ \pm 130$ eV, $ \pm 300$ eV and $ \pm 80$ eV on boron-phosphorus (BP) co-doped monolayer ArGNR, for CH 4 , NH 3, and NO 2 , respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特定 PM2.5 污染物对单层/双层 ArGNR 的影响
高浓度的微粒物质(PM2.5)可能会增加人们获得有害健康影响的风险,因此对微小污染物的高性能监测可能会保护人们的健康。本研究利用氢钝化层分析了特定 PM2.5 污染物在掺杂/未掺杂单层/双层臂向石墨烯纳米带(ArGNR)上的吸附行为。通过使用第一原理密度泛函理论(DFT),仔细研究了掺杂对 ArGNR 衬底的影响。由于表面原子比较脆弱,单层 ArGNR 的吸附能大约是双层结构的两倍。然而,特定的 PM2.5 污染物、CH4、NH3 和 NO2 分子的化学吸附能分别为 -2 eV、-2.95 eV 和 -4 eV,带隙变化极小,分别为 -65% 至 -70% 和 -100%,电荷转移量极大,分别为 +0.153 eV、+0.156 eV 和 +0.010 eV,在硼磷(BP)共掺杂单层 ArGNR 上,CH4、NH3 和 NO2 在 B 位的 DOS 峰分别为 $\pm 110\,\text{eV}, \pm 65{\rm{ eV}}, \pm 80{\rm{ eV}}$ ,在 P 位的 DOS 峰分别为 $\pm 130$ eV, $\pm 300$ eV 和 $\pm 80$ eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1