Fatemeh Karimi, Elif Esra Altuner, Aysenur Aygun, Ramazan Bayat, Saravanan Rajendran, Fatih Sen
{"title":"Synthesis of Silver Nanoparticles by Biogenic Methods: Characterization and Development of a Sensor Sensible to Pharmaceutical Medicine Paracetamol","authors":"Fatemeh Karimi, Elif Esra Altuner, Aysenur Aygun, Ramazan Bayat, Saravanan Rajendran, Fatih Sen","doi":"10.1007/s11244-023-01887-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, silver nanoparticles (Ag NPs) were synthesized in biogenic methods. It is aimed to improve the electrochemical sensor efficiency of synthesized Ag NPs against the pharmaceutical drug paracetamol. For this purpose, fourier transmission infrared spectroscopy (FTIR), ultra-violet visible spectroscopy (Uv–vis), X-ray differentiation (XRD), and transmission electron spectroscopy (TEM) analyses were performed to elucidate the structure of the synthesized Ag NPs. In the TEM characterization results, the mean size of the NPs was found to be 19.035 nm using TEM characterization and the XRD results, the crystalline size of the NPs was 11.66 nm. Sensor studies were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Paracetamol showed a sensitivity of approximately 0.4 V to Ag NPs in this study. The linear ranges of this study are 6.5–14.5 µM, with a limit of detection (LOD) of 5.79 µM and a limit of quantification (LOQ) of 17.56 µM.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"195 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-023-01887-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, silver nanoparticles (Ag NPs) were synthesized in biogenic methods. It is aimed to improve the electrochemical sensor efficiency of synthesized Ag NPs against the pharmaceutical drug paracetamol. For this purpose, fourier transmission infrared spectroscopy (FTIR), ultra-violet visible spectroscopy (Uv–vis), X-ray differentiation (XRD), and transmission electron spectroscopy (TEM) analyses were performed to elucidate the structure of the synthesized Ag NPs. In the TEM characterization results, the mean size of the NPs was found to be 19.035 nm using TEM characterization and the XRD results, the crystalline size of the NPs was 11.66 nm. Sensor studies were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Paracetamol showed a sensitivity of approximately 0.4 V to Ag NPs in this study. The linear ranges of this study are 6.5–14.5 µM, with a limit of detection (LOD) of 5.79 µM and a limit of quantification (LOQ) of 17.56 µM.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.