Aodong Zhu , Lin Chen , Ao Zhang , Chenpu Zhu , Xinxin Zhang , Jie Zhong , Fuzhi Huang , Yi-Bing Cheng , Junyan Xiao
{"title":"Playdough-like carbon electrode: A promising strategy for high efficiency perovskite solar cells and modules","authors":"Aodong Zhu , Lin Chen , Ao Zhang , Chenpu Zhu , Xinxin Zhang , Jie Zhong , Fuzhi Huang , Yi-Bing Cheng , Junyan Xiao","doi":"10.1016/j.esci.2023.100221","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-based perovskite solar cells (C-PSCs) are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability. However, the fabrication of high-performance C-PSCs with large-area electrodes remains challenging. In this work, we propose a novel playdough-like graphite putty as top electrode in the perovskite devices. This electrode with soft nature can form good contact with the hole-transporting layer and the conductive substrate at room temperature by a simple pressing technique, which facilitates the fabrication of both small-area devices and perovskite solar modules. In this preliminary research, the corresponding small devices and modules can achieve efficiencies of 20.29% (∼0.15 cm<sup>2</sup>) and 16.01% (∼10 cm<sup>2</sup>), respectively. Moreover, we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance, suggesting a direction for further improvement of C-PSCs in the future.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100221"},"PeriodicalIF":42.9000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001751/pdfft?md5=581b2051f0552172b41c70cb0f765139&pid=1-s2.0-S2667141723001751-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-based perovskite solar cells (C-PSCs) are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability. However, the fabrication of high-performance C-PSCs with large-area electrodes remains challenging. In this work, we propose a novel playdough-like graphite putty as top electrode in the perovskite devices. This electrode with soft nature can form good contact with the hole-transporting layer and the conductive substrate at room temperature by a simple pressing technique, which facilitates the fabrication of both small-area devices and perovskite solar modules. In this preliminary research, the corresponding small devices and modules can achieve efficiencies of 20.29% (∼0.15 cm2) and 16.01% (∼10 cm2), respectively. Moreover, we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance, suggesting a direction for further improvement of C-PSCs in the future.