Nicholas E. Burgis, Kandise VanWormer, Devin Robbins, Jonathan Smith
{"title":"An ITPA Enzyme with Improved Substrate Selectivity","authors":"Nicholas E. Burgis, Kandise VanWormer, Devin Robbins, Jonathan Smith","doi":"10.1007/s10930-023-10162-0","DOIUrl":null,"url":null,"abstract":"<div><p>Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the <i>ITPA</i> gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor <i>ITPA</i> polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10930-023-10162-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-023-10162-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.