首页 > 最新文献

The Protein Journal最新文献

英文 中文
Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities 蛋白质 S-亚硝基化:具有普遍生物活性的化学修饰
IF 2.371 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-28 DOI: 10.1007/s10930-024-10223-y
Adam A. Aboalroub, Khaldun M. Al Azzam

Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S–NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S–NO proteins. This article briefly reviews the progress in S–NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S–NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.

Graphical Abstract

一氧化氮(NO)可诱导蛋白质翻译后修饰(PTM),即 S-亚硝基化,它作为数千种底物蛋白质的关键调节因子已开始受到关注。然而,由于已鉴定的 S-亚硝基化蛋白质(S-NO 蛋白质)数量有限,我们对这一新兴 PTM 的生物学后果的了解还不全面。检测方法的最新进展有效地拓宽了已发现的 S-NO 蛋白的范围。本文简要回顾了 S-NO 蛋白检测方法的进展,并讨论了这些方法如何参与表征这种 PTM 的生物学后果。此外,我们还深入探讨了与 S-NO 蛋白相关的疾病,重点是这些蛋白质在减轻传染性疾病严重性方面的作用。
{"title":"Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities","authors":"Adam A. Aboalroub, Khaldun M. Al Azzam","doi":"10.1007/s10930-024-10223-y","DOIUrl":"https://doi.org/10.1007/s10930-024-10223-y","url":null,"abstract":"<p>Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S–NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S–NO proteins. This article briefly reviews the progress in S–NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S–NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic Insights into How the Single Point Mutation Change the Autoantibody Repertoire 单点突变如何改变自身抗体汇集的机制启示
IF 2.371 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-28 DOI: 10.1007/s10930-024-10225-w
Zhong Ni, Fangyuan Song, Huimin Zhou, Ying Xu, Zhiguo Wang, Dongfeng Chen

A recent study showed that just one point mutation F33 to Y in the complementarity-determining region 1 of heavy chain (H-CDR1) could lead to the auto-antibody losing its DNA binding ability. However, the potential molecular mechanisms have not been well elucidated. In this study, we investigated how the antibody lost the DNA binding ability caused by mutation F33 to Y in the H-CDR1. We found that the electrostatic force was not the primary driving force for the interaction between anti-DNA antibodies and the antigen single strand DNA (ssDNA), and that the H-CDR2 largely contributed to the binding of antigen ssDNA, even larger than H-CDR1. The H-F33Y mutation could increase the hydrogen-bond interaction but impair the pi-pi stacking interaction between the antibody and ssDNA. We further found that F33H, W98H and Y95L in the wiletype antibody could form the stable pi-pi stacking interaction with the nucleotide bases of ssDNA. However, the Y33 in mutant could not form the parallel sandwich pi-pi stacking interaction with the ssDNA. To further confirm the importance of pi-pi stacking, the wildtype antibody and the mutants (F33YH, F33AH, W98AH and Y95AL) were experimentally expressed in CHO cells and purified, and the results from ELISA clearly showed that all the mutants lost the ssDNA binding ability. Taken together, our findings may not only deepen the understanding of the underlying interaction mechanism between autoantibody and antigen, but also broad implications in the field of antibody engineer.

最近的一项研究表明,只要重链互补决定区 1(H-CDR1)中的一个点突变 F33 变为 Y,就会导致自身抗体失去与 DNA 结合的能力。然而,潜在的分子机制尚未得到很好的阐明。在本研究中,我们研究了抗体是如何因 H-CDR1 中的 F33 突变为 Y 而失去 DNA 结合能力的。我们发现,静电力并不是抗DNA抗体与抗原单链DNA(ssDNA)相互作用的主要驱动力,H-CDR2在很大程度上促进了抗原ssDNA的结合,甚至大于H-CDR1。H-F33Y突变可增加抗体与抗原单链DNA之间的氢键相互作用,但会损害抗体与抗原单链DNA之间的π-π堆积相互作用。我们进一步发现,Wile 型抗体中的 F33H、W98H 和 Y95L 可以与 ssDNA 的核苷酸碱基形成稳定的 pi-pi 堆叠作用。然而,突变体中的 Y33 不能与 ssDNA 形成平行的三明治 pi-pi 堆叠作用。为了进一步证实 pi-pi 堆叠的重要性,我们在 CHO 细胞中实验表达并纯化了野生型抗体和突变体(F33YH、F33AH、W98AH 和 Y95AL),ELISA 的结果清楚地表明所有突变体都失去了与 ssDNA 结合的能力。综上所述,我们的发现不仅可以加深对自身抗体与抗原之间相互作用机制的理解,而且在抗体工程师领域具有广泛的意义。
{"title":"Mechanistic Insights into How the Single Point Mutation Change the Autoantibody Repertoire","authors":"Zhong Ni, Fangyuan Song, Huimin Zhou, Ying Xu, Zhiguo Wang, Dongfeng Chen","doi":"10.1007/s10930-024-10225-w","DOIUrl":"https://doi.org/10.1007/s10930-024-10225-w","url":null,"abstract":"<p>A recent study showed that just one point mutation F33 to Y in the complementarity-determining region 1 of heavy chain (H-CDR1) could lead to the auto-antibody losing its DNA binding ability. However, the potential molecular mechanisms have not been well elucidated. In this study, we investigated how the antibody lost the DNA binding ability caused by mutation F33 to Y in the H-CDR1. We found that the electrostatic force was not the primary driving force for the interaction between anti-DNA antibodies and the antigen single strand DNA (ssDNA), and that the H-CDR2 largely contributed to the binding of antigen ssDNA, even larger than H-CDR1. The H-F33Y mutation could increase the hydrogen-bond interaction but impair the pi-pi stacking interaction between the antibody and ssDNA. We further found that F33<sub>H</sub>, W98<sub>H</sub> and Y95<sub>L</sub> in the wiletype antibody could form the stable pi-pi stacking interaction with the nucleotide bases of ssDNA. However, the Y33 in mutant could not form the parallel sandwich pi-pi stacking interaction with the ssDNA. To further confirm the importance of pi-pi stacking, the wildtype antibody and the mutants (F33Y<sub>H</sub>, F33A<sub>H</sub>, W98A<sub>H</sub> and Y95A<sub>L</sub>) were experimentally expressed in CHO cells and purified, and the results from ELISA clearly showed that all the mutants lost the ssDNA binding ability. Taken together, our findings may not only deepen the understanding of the underlying interaction mechanism between autoantibody and antigen, but also broad implications in the field of antibody engineer.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Machine Learning Approach to Identify C Type Lectin Domain (CTLD) Containing Proteins 识别含 C 型连接蛋白域 (CTLD) 蛋白质的机器学习方法
IF 2.371 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-28 DOI: 10.1007/s10930-024-10224-x
Lovepreet Singh, Sukhwinder Singh, Desh Deepak Singh

Lectins are sugar interacting proteins which bind specific glycans reversibly and have ubiquitous presence in all forms of life. They have diverse biological functions such as cell signaling, molecular recognition, etc. C-type lectins (CTL) are a group of proteins from the lectin family which have been studied extensively in animals and are reported to be involved in immune functions, carcinogenesis, cell signaling, etc. The carbohydrate recognition domain (CRD) in CTL has a highly variable protein sequence and proteins carrying this domain are also referred to as C-type lectin domain containing proteins (CTLD). Because of this low sequence homology, identification of CTLD from hypothetical proteins in the sequenced genomes using homology based programs has limitations. Machine learning (ML) tools use characteristic features to identify homologous sequences and it has been used to develop a tool for identification of CTLD. Initially 500 sequences of well annotated CTLD and 500 sequences of non CTLD were used in developing the machine learning model. The classifier program Linear SVC from sci kit library of python was used and characteristic features in CTLD sequences like dipeptide and tripeptide composition were used as training attributes in various classifiers. A precision, recall and multiple correlation coefficient (MCC) value of 0.92, 0.91 and 0.82 respectively were obtained when tested on external test set. On fine tuning of the parameters like kernel, C value, gamma, degree and increasing number of non CTLD sequences there was improvement in precision, recall and MCC and the corresponding values were 0.99, 0.99 and 0.96. New CTLD have also been identified in the hypothetical segment of human genome using the trained model. The tool is available on our local server for interested users.

凝集素是一种与糖相互作用的蛋白质,可逆地与特定的糖结合,在所有生命形式中无处不在。它们具有多种生物功能,如细胞信号传导、分子识别等。C 型凝集素(CTL)是凝集素家族中的一类蛋白质,已在动物体内进行了广泛的研究,据报道它参与免疫功能、致癌、细胞信号传导等。CTL 中的碳水化合物识别结构域(CRD)具有高度可变的蛋白质序列,携带该结构域的蛋白质也被称为含 C 型凝集素结构域的蛋白质(CTLD)。由于序列同源性较低,因此使用基于同源性的程序从已测序基因组中的假定蛋白质中识别 CTLD 有其局限性。机器学习(ML)工具利用特征来识别同源序列,它已被用于开发一种识别 CTLD 的工具。在开发机器学习模型时,最初使用了 500 个注释良好的 CTLD 序列和 500 个非 CTLD 序列。使用了 python sci kit 库中的分类器程序 Linear SVC,并将 CTLD 序列中的特征(如二肽和三肽组成)作为各种分类器的训练属性。在外部测试集上进行测试时,精确度、召回率和多重相关系数(MCC)值分别为 0.92、0.91 和 0.82。在微调内核、C 值、伽马值、度数等参数以及增加非 CTLD 序列的数量后,精确度、召回率和多重相关系数均有所提高,相应的值分别为 0.99、0.99 和 0.96。利用训练有素的模型还在人类基因组的假设片段中鉴定出了新的 CTLD。该工具可在我们的本地服务器上供感兴趣的用户使用。
{"title":"A Machine Learning Approach to Identify C Type Lectin Domain (CTLD) Containing Proteins","authors":"Lovepreet Singh, Sukhwinder Singh, Desh Deepak Singh","doi":"10.1007/s10930-024-10224-x","DOIUrl":"https://doi.org/10.1007/s10930-024-10224-x","url":null,"abstract":"<p>Lectins are sugar interacting proteins which bind specific glycans reversibly and have ubiquitous presence in all forms of life. They have diverse biological functions such as cell signaling, molecular recognition, etc. C-type lectins (CTL) are a group of proteins from the lectin family which have been studied extensively in animals and are reported to be involved in immune functions, carcinogenesis, cell signaling, etc. The carbohydrate recognition domain (CRD) in CTL has a highly variable protein sequence and proteins carrying this domain are also referred to as C-type lectin domain containing proteins (CTLD). Because of this low sequence homology, identification of CTLD from hypothetical proteins in the sequenced genomes using homology based programs has limitations. Machine learning (ML) tools use characteristic features to identify homologous sequences and it has been used to develop a tool for identification of CTLD. Initially 500 sequences of well annotated CTLD and 500 sequences of non CTLD were used in developing the machine learning model. The classifier program Linear SVC from sci kit library of python was used and characteristic features in CTLD sequences like dipeptide and tripeptide composition were used as training attributes in various classifiers. A precision, recall and multiple correlation coefficient (MCC) value of 0.92, 0.91 and 0.82 respectively were obtained when tested on external test set. On fine tuning of the parameters like kernel, C value, gamma, degree and increasing number of non CTLD sequences there was improvement in precision, recall and MCC and the corresponding values were 0.99, 0.99 and 0.96. New CTLD have also been identified in the hypothetical segment of human genome using the trained model. The tool is available on our local server for interested users.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Protease from Moringa oleifera Lam. Exhibits In-vitro Blood Clot Solubilization and Fibrin Hydrolysis 从油辣木中提取的一种蛋白酶具有体外溶解血凝块和水解纤维蛋白的作用
IF 2.371 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-28 DOI: 10.1007/s10930-024-10222-z
Sawetaji, Kamal Krishan Aggarwal

Thrombosis is the formation of abnormal blood clots in the blood vessels that obstruct blood flow and lead to thrombosis. Current treatments for thrombosis are associated with serious side effects. Therefore there is a need for alternative natural therapy. A fibrinolytic protease was isolated from fresh leaves of Moringa oleifera Lam. and characterized for its potential to solubilize blood clots and hydrolyse fibrin under in-vitro conditions. The isolated protease showed a single protein band on native-PAGE. It showed optimum fibrinolytic activity at pH 8.0, 37 oC with 50 µg protein. The fibrinolytic activity of isolated protease was also confirmed by fibrin zymography. Km and Vmax of isolated protease were determined by the Lineweaver Burk plot. The isolated protease could solubilize 96.41% of blood clots by 96 h under in-vitro conditions. In-vitro fibrin hydrolysis and blood clot solubilization activities shown by an isolated protease from leaves of Moringa oleifera Lam. suggest its fibrinolytic potential to dissolve blood clots. Being a natural molecule and from a dietary plant it can be explored as an alternative natural therapy against thrombosis.

血栓形成是指血管内形成异常血块,阻碍血液流动并导致血栓形成。目前治疗血栓的方法都有严重的副作用。因此,有必要寻找替代的自然疗法。从油辣木的新鲜叶子中分离出一种纤维蛋白溶解蛋白酶,并对其在体外条件下溶解血凝块和水解纤维蛋白的潜力进行了鉴定。分离出的蛋白酶在原生聚合酶链上显示出单一的蛋白质条带。它在 pH 值为 8.0、温度为 37 oC、蛋白质含量为 50 µg 时显示出最佳的纤维蛋白溶解活性。纤维蛋白酶谱也证实了分离蛋白酶的纤维蛋白溶解活性。分离蛋白酶的 Km 和 Vmax 是通过 Lineweaver Burk 图确定的。在体外条件下,分离蛋白酶可在 96 小时内溶解 96.41% 的血凝块。从油辣木叶片中分离出的蛋白酶所显示的体外纤维蛋白水解和血凝块溶解活性表明,它具有溶解血凝块的纤维蛋白溶解潜力。作为一种天然分子和食源性植物,它可以作为一种替代性自然疗法来治疗血栓形成。
{"title":"A Protease from Moringa oleifera Lam. Exhibits In-vitro Blood Clot Solubilization and Fibrin Hydrolysis","authors":"Sawetaji, Kamal Krishan Aggarwal","doi":"10.1007/s10930-024-10222-z","DOIUrl":"https://doi.org/10.1007/s10930-024-10222-z","url":null,"abstract":"<p>Thrombosis is the formation of abnormal blood clots in the blood vessels that obstruct blood flow and lead to thrombosis. Current treatments for thrombosis are associated with serious side effects. Therefore there is a need for alternative natural therapy. A fibrinolytic protease was isolated from fresh leaves of <i>Moringa oleifera</i> Lam. and characterized for its potential to solubilize blood clots and hydrolyse fibrin under in-vitro conditions. The isolated protease showed a single protein band on native-PAGE. It showed optimum fibrinolytic activity at pH 8.0, 37 <sup>o</sup>C with 50 µg protein. The fibrinolytic activity of isolated protease was also confirmed by fibrin zymography. K<sub>m</sub> and V<sub>max</sub> of isolated protease were determined by the Lineweaver Burk plot. The isolated protease could solubilize 96.41% of blood clots by 96 h under in-vitro conditions. In-vitro fibrin hydrolysis and blood clot solubilization activities shown by an isolated protease from leaves of <i>Moringa oleifera</i> Lam. suggest its fibrinolytic potential to dissolve blood clots. Being a natural molecule and from a dietary plant it can be explored as an alternative natural therapy against thrombosis.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of Peptide Self-assembly and Its Study in Biomedicine 多肽自组装机制及其在生物医学中的研究
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-04-27 DOI: 10.1007/s10930-024-10200-5
Xinyue Yang, Li Ma, Kui Lu, Dongxin Zhao

The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.

肽基材料的开发是近年来生物材料研究领域最具挑战性的课题之一。肽的组装主要受氢键作用、疏水作用、静电作用和π-π堆积等力的控制。多肽具有结构简单、易于合成、生物相容性好、无毒、易修饰等独特优势。这些因素使多肽成为理想的生物医学材料,在生物医学材料领域具有广阔的应用前景,因而受到广泛关注。本综述介绍了多肽自组装的机理、分类及其在生物医学和水凝胶中的应用。
{"title":"Mechanism of Peptide Self-assembly and Its Study in Biomedicine","authors":"Xinyue Yang, Li Ma, Kui Lu, Dongxin Zhao","doi":"10.1007/s10930-024-10200-5","DOIUrl":"https://doi.org/10.1007/s10930-024-10200-5","url":null,"abstract":"<p>The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the Structure-Function Relationship of the Muramidase Domain in E. coli O157.H7 Bacteriophage Endolysin: A Potential Building Block for Chimeric Enzybiotics. 解码大肠杆菌 O157.H7 噬菌体内溶解素中酪氨酸酶结构域的结构-功能关系:嵌合型 Enzybiotics 的潜在构件。
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2024-04-25 DOI: 10.1007/s10930-024-10195-z
Mehri Javid, A. Shahverdi, A. Ghasemi, Ali Akabar Moosavi-Movahedi, A. Ebrahim-Habibi, Z. Sepehrizadeh
{"title":"Decoding the Structure-Function Relationship of the Muramidase Domain in E. coli O157.H7 Bacteriophage Endolysin: A Potential Building Block for Chimeric Enzybiotics.","authors":"Mehri Javid, A. Shahverdi, A. Ghasemi, Ali Akabar Moosavi-Movahedi, A. Ebrahim-Habibi, Z. Sepehrizadeh","doi":"10.1007/s10930-024-10195-z","DOIUrl":"https://doi.org/10.1007/s10930-024-10195-z","url":null,"abstract":"","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis 用分子建模方法发现 PPAR-γ 和 α-葡萄糖苷酶双靶点新药:分子对接、分子动力学模拟和 MM/PBSA 分析
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-04-20 DOI: 10.1007/s10930-024-10196-y
Süleyman Kaya, Gizem Tatar-Yılmaz, Bedriye Seda Kurşun Aktar, Emine Elçin Oruç Emre

Type 2 diabetes mellitus (T2DM) has become a serious public health problem both in our country and worldwide, being the most prevalent type of diabetes. The combined use of drugs in the treatment of T2DM leads to serious side effects, including gastrointestinal problems, liver toxicity, hypoglycemia, and treatment costs. Hence, there has been a growing emphasis on drugs that demonstrate dual interactions. Several studies have suggested that dual-target agents for peroxisome proliferator-activated receptor-γ (PPAR-γ) and alpha-glucosidase (α-glucosidase) could be a potent approach for treating patients with diabetes. We aim to develop new antidiabetic agents that target PPAR-γ and α-glucosidase enzymes using molecular modeling techniques. These compounds show dual interactions, are more effective, and have fewer side effects. The molecular docking method was employed to investigate the enzyme-ligand interaction mechanisms of 159 newly designed compounds with target enzymes. Additionally, we evaluated the ADME properties and pharmacokinetic suitability of these compounds based on Lipinski and Veber’s rules. Compound 70, which exhibited favorable ADME properties, demonstrated more effective binding energy with both PPAR-γ and α-glucosidase enzymes (-12,16 kcal/mol, -10.07 kcal/mol) compared to the reference compounds of Acetohexamide (-9.31 kcal/mol, -7.48 kcal/mol) and Glibenclamide (-11.12 kcal/mol, -8.66 kcal/mol). Further, analyses of MM/PBSA binding free energy and molecular dynamics (MD) simulations were conducted for target enzymes with compound 70, which exhibited the most favorable binding affinities with both enzymes. Based on this information, our study aims to contribute to the development of new dual-target antidiabetic agents with improved efficacy, reduced side effects, and enhanced reliability for diabetes treatment.

2 型糖尿病(T2DM)已成为我国和全世界严重的公共卫生问题,也是发病率最高的糖尿病类型。联合用药治疗 T2DM 会导致严重的副作用,包括胃肠道问题、肝毒性、低血糖和治疗费用。因此,人们越来越重视具有双重相互作用的药物。一些研究表明,过氧化物酶体增殖激活受体-γ(PPAR-γ)和α-葡萄糖苷酶(α-葡萄糖苷酶)双靶向药物可能是治疗糖尿病患者的有效方法。我们的目标是利用分子建模技术开发针对 PPAR-γ 和 α-葡萄糖苷酶的新型抗糖尿病药物。这些化合物具有双重相互作用,疗效更好,副作用更小。我们采用分子对接法研究了 159 种新设计化合物与靶酶的酶配体相互作用机制。此外,我们还根据 Lipinski 和 Veber 的规则评估了这些化合物的 ADME 特性和药代动力学适宜性。与参考化合物乙酰己酰胺(-9.31 kcal/mol,-7.48 kcal/mol)和格列本脲(-11.12 kcal/mol,-8.66 kcal/mol)相比,表现出良好 ADME 特性的化合物 70 与 PPAR-γ 和 α-葡萄糖苷酶的有效结合能(-12.16 kcal/mol,-10.07 kcal/mol)更高。此外,还对目标酶与化合物 70 的 MM/PBSA 结合自由能和分子动力学(MD)模拟进行了分析,结果表明化合物 70 与这两种酶的结合亲和力最强。基于这些信息,我们的研究旨在为开发疗效更好、副作用更小、可靠性更高的新型双靶点抗糖尿病药物做出贡献。
{"title":"Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis","authors":"Süleyman Kaya, Gizem Tatar-Yılmaz, Bedriye Seda Kurşun Aktar, Emine Elçin Oruç Emre","doi":"10.1007/s10930-024-10196-y","DOIUrl":"https://doi.org/10.1007/s10930-024-10196-y","url":null,"abstract":"<p>Type 2 diabetes mellitus (T2DM) has become a serious public health problem both in our country and worldwide, being the most prevalent type of diabetes. The combined use of drugs in the treatment of T2DM leads to serious side effects, including gastrointestinal problems, liver toxicity, hypoglycemia, and treatment costs. Hence, there has been a growing emphasis on drugs that demonstrate dual interactions. Several studies have suggested that dual-target agents for peroxisome proliferator-activated receptor-γ (PPAR-γ) and alpha-glucosidase (α-glucosidase) could be a potent approach for treating patients with diabetes. We aim to develop new antidiabetic agents that target PPAR-γ and α-glucosidase enzymes using molecular modeling techniques. These compounds show dual interactions, are more effective, and have fewer side effects. The molecular docking method was employed to investigate the enzyme-ligand interaction mechanisms of 159 newly designed compounds with target enzymes. Additionally, we evaluated the ADME properties and pharmacokinetic suitability of these compounds based on Lipinski and Veber’s rules. Compound 70, which exhibited favorable ADME properties, demonstrated more effective binding energy with both PPAR-γ and α-glucosidase enzymes (-12,16 kcal/mol, -10.07 kcal/mol) compared to the reference compounds of Acetohexamide (-9.31 kcal/mol, -7.48 kcal/mol) and Glibenclamide (-11.12 kcal/mol, -8.66 kcal/mol). Further, analyses of MM/PBSA binding free energy and molecular dynamics (MD) simulations were conducted for target enzymes with compound 70, which exhibited the most favorable binding affinities with both enzymes. Based on this information, our study aims to contribute to the development of new dual-target antidiabetic agents with improved efficacy, reduced side effects, and enhanced reliability for diabetes treatment.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Proteostasis of Thymic Stromal Cells in Health and Diseases 健康和疾病中胸腺基质细胞的蛋白稳态
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-04-16 DOI: 10.1007/s10930-024-10197-x
Ting Liu, Sheng Xia

The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.

胸腺是 T 细胞发育的关键免疫器官。不同的胸腺基质细胞群与 T 细胞相互作用,从而通过其分化和功能控制 T 细胞的动态发育。蛋白质稳态代表了蛋白质表达、折叠和修饰与蛋白质清除之间的平衡,其波动通常至少部分依赖于相关的蛋白质调节系统,以获得进一步的生存和效应。然而,就对自身抗原的大量需求及其处理负担而言,越来越多的证据表明,蛋白质调节有助于胸腺基质细胞的生理效应。蛋白稳态受损可能会加速胸腺萎缩和功能障碍的进展,并伴随着自身免疫性疾病或胸腺瘤的发展。因此,在这篇综述中,我们总结了不同类型的胸腺基质细胞在生理和病理条件下的蛋白稳态调控,以确定胸腺再生和免疫疗法的潜在靶点。
{"title":"The Proteostasis of Thymic Stromal Cells in Health and Diseases","authors":"Ting Liu, Sheng Xia","doi":"10.1007/s10930-024-10197-x","DOIUrl":"https://doi.org/10.1007/s10930-024-10197-x","url":null,"abstract":"<p>The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Analyses of Vertebrate G-Protein-Coupled Receptor Fusions United With or Without an Additional Transmembrane Sequence Indicate Classification into Three Groups of Linkers 对脊椎动物 G 蛋白偶联受体融合体进行的硅学分析表明,无论融合体是否具有额外的跨膜序列,都可将其分为三类连接体
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-04-14 DOI: 10.1007/s10930-024-10184-2
Toshio Kamiya, Takashi Masuko, Dasiel Oscar Borroto-Escuela, Haruo Okado, Hiroyasu Nakata

Natural G-protein-coupled receptors (GPCRs) rarely have an additional transmembrane (TM) helix, such as an artificial TM-linker that can unite two class A GPCRs in tandem as a single-polypeptide chain (sc). Here, we report that three groups of TM-linkers exist in the intervening regions of natural GPCR fusions from vertebrates: (1) the original consensus (i.e., consensus 1) and consensus 2~4 (related to GPCR itself or its receptor-interacting proteins); (2) the consensus but GPCR-unrelated ones, 1~7; and (3) the inability to apply 1/2 that show no similarity to any other proteins. In silico analyses indicated that all natural GPCR fusions from Amphibia lack a TM-linker, and reptiles have no GPCR fusions; moreover, in either the GPCR-GPCR fusion or fusion protein of (GPCR monomer) and non-GPCR proteins from vertebrates, excluding tetrapods, i.e., so-called fishes, TM-linkers differ from previously reported mammalian and are avian sequences and are classified as Groups 2 and 3. Thus, previously reported TM-linkers were arranged: Consensus 1 is [T(I/A/P)(A/S)–(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)] first identified in invertebrate sea anemone Exaiptasia diaphana (LOC110241027) and (330-SPSFLCI–L–SLL-340) identified in a tropical bird Opisthocomus hoazin protein LOC104327099 (XP_009930279.1); GPCR-related consensus 2~4 are, respectively, (371-prlilyavfc fgtatg-386) in the desert woodrat Neotoma lepida A6R68_19462 (OBS78147.1), (363-lsipfcll yiaallgnfi llfvi-385) in Gavia stellate (red-throated loon) LOC104264164 (XP_009819412.1), and (479-ti vvvymivcvi glvgnflvmy viir-504) in a snailfish GPCR (TNN80062.1); In Mammals Neotoma lepida, Aves Erythrura gouldiae, and fishes protein (respectively, OBS83645.1, RLW13346.1 and KPP79779.1), the TM-linkers are Group 2. Here, we categorized, for the first time, natural TM-linkers as rare evolutionary events among all vertebrates.

天然的 G 蛋白偶联受体(GPCR)很少有额外的跨膜(TM)螺旋,如人工 TM 连接体,它可以将两个 A 类 GPCR 串联成一条单多肽链(sc)。在这里,我们报告了脊椎动物天然 GPCR 融合体的中间区域存在三组 TM 连接体:(1) 原始共识(即共识 1)和共识 2~4(与 GPCR 本身或其受体相互作用蛋白相关);(2) 共识但与 GPCR 无关的 1~7;(3) 无法应用的 1/2,与任何其他蛋白都没有相似性。硅学分析表明,两栖类的所有天然 GPCR 融合蛋白都缺乏 TM 连接子,爬行动物没有 GPCR 融合蛋白;此外,在脊椎动物(不包括四足动物,即所谓的鱼类)的 GPCR-GPCR 融合蛋白或融合蛋白(GPCR 单体)和非 GPCR 蛋白中,TM 连接子与之前报道的哺乳动物和鸟类序列不同,被归为第 2 组和第 3 组。因此,对之前报道的 TM 链接子进行了排列:共识 1 是[T(I/A/P)(A/S)-(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)],首次在无脊椎动物海葵 Exaiptasia diaphana 中发现(LOC110241027),在热带鸟类 Opisthocomus hoazin 蛋白质 LOC104327099 中发现(330-SPSFLCI-L-SLL-340)(XP_009930279.1);与 GPCR 相关的共识 2~4 分别是沙漠木鼠 Neotoma lepida A6R68_19462 中的(371-prlilyavfc fgtatg-386)(OBS78147.1)中的(363-lsipfcll yiaallgnfi llfvi-385)、Gavia stellate(红喉鹭)LOC104264164(XP_009819412.1)中的(479-ti vvvymivcvi glvgnflvmy viir-504)和蜗牛鱼 GPCR(TNN80062.在哺乳动物 Neotoma lepida、鸟类 Erythrura gouldiae 和鱼类蛋白质(分别为 OBS83645.1、RLW13346.1 和 KPP79779.1)中,TM 链接子属于第 2 组。 在此,我们首次将天然 TM 链接子归类为所有脊椎动物中的罕见进化事件。
{"title":"In Silico Analyses of Vertebrate G-Protein-Coupled Receptor Fusions United With or Without an Additional Transmembrane Sequence Indicate Classification into Three Groups of Linkers","authors":"Toshio Kamiya, Takashi Masuko, Dasiel Oscar Borroto-Escuela, Haruo Okado, Hiroyasu Nakata","doi":"10.1007/s10930-024-10184-2","DOIUrl":"https://doi.org/10.1007/s10930-024-10184-2","url":null,"abstract":"<p>Natural G-protein-coupled receptors (GPCRs) rarely have an additional transmembrane (TM) helix, such as an artificial TM-linker that can unite two class A GPCRs in tandem as a single-polypeptide chain (sc). Here, we report that three groups of TM-linkers exist in the intervening regions of natural GPCR fusions from vertebrates: (1) the original consensus (i.e., consensus 1) and consensus 2~4 (related to GPCR itself or its receptor-interacting proteins); (2) the consensus but GPCR-unrelated ones, 1~7; and (3) the inability to apply 1/2 that show no similarity to any other proteins. In silico analyses indicated that all natural GPCR fusions from Amphibia lack a TM-linker, and reptiles have no GPCR fusions; moreover, in either the GPCR-GPCR fusion or fusion protein of (GPCR monomer) and non-GPCR proteins from vertebrates, excluding tetrapods, i.e., so-called fishes, TM-linkers differ from previously reported mammalian and are avian sequences and are classified as Groups 2 and 3. Thus, previously reported TM-linkers were arranged: Consensus 1 is [T(I/A/P)(A/S)–(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)] first identified in invertebrate sea anemone <i>Exaiptasia diaphana</i> (LOC110241027) and (330-SPSFLCI–L–SLL-340) identified in a tropical bird <i>Opisthocomus hoazin</i> protein LOC104327099 (XP_009930279.1); GPCR-related consensus 2~4 are, respectively, (371-prlilyavfc fgtatg-386) in the desert woodrat <i>Neotoma lepida</i> A6R68_19462 (OBS78147.1), (363-lsipfcll yiaallgnfi llfvi-385) in <i>Gavia stellate</i> (red-throated loon) LOC104264164 (XP_009819412.1), and (479-ti vvvymivcvi glvgnflvmy viir-504) in a snailfish GPCR (TNN80062.1); In Mammals <i>Neotoma lepida</i>, Aves <i>Erythrura gouldiae</i>, and fishes protein (respectively, OBS83645.1, RLW13346.1 and KPP79779.1), the TM-linkers are Group 2. Here, we categorized, for the first time, natural TM-linkers as rare evolutionary events among all vertebrates.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties 与葡萄糖结合的双色 Dioclea Lectin (DBL):纯化、表征、结构分析和抗菌特性
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-04-14 DOI: 10.1007/s10930-024-10199-9
Willian F. Reis, Marcos E. S. Silva, Ana C. S. Gondim, Renato C. F. Torres, Rômulo F. Carneiro, Celso S. Nagano, Alexandre H. Sampaio, Claudener S. Teixeira, Lenita C. B. F. Gomes, Bruno L. Sousa, Alexandre L. Andrade, Edson H. Teixeira, Mayron A. Vasconcelos

In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56–50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of –26,642.69141/Normalized DOPE score of –1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.

在这项研究中,我们通过亲和纯化法纯化了从Dioclea bicolor种子中分离出来的一种凝集素(DBL)。电泳分析显示,DBL 有三条带,分别为 α、β 和 γ 链,分子质量分别约为 29、14 和 12 kDa。凝胶过滤色谱法显示,原生形式的 DBL 分子质量约为 100 kDa,表明它是一个四聚体。有趣的是,DBL 诱导的血凝作用受到几种苷类、甘露苷类、氨苄西林和四环素的抑制,最低抑制浓度(MIC)值为 1.56-50 mM。对 DBL 完整氨基酸序列的分析表明,DBL 含有 237 个氨基酸,与其他 Diocleinae 凝集素高度相似。圆二色性显示了DBL突出的β-片状二级结构。此外,DBL结构预测显示离散优化蛋白能量(DOPE)得分为-26,642.69141/归一化DOPE得分为-1.84041。根据其三维结构发现,DBL单体由β-三明治组成。分子对接显示了DBL与α-D-葡萄糖、N-乙酰-D-葡萄糖胺、α-D-甘露糖、α-甲基-D-甘露糖苷、氨苄西林和四环素之间的相互作用。此外,DBL 还具有抗菌活性,其 MIC 值为 125 μg/mL,与氨苄西林和四环素联用可产生协同效应(部分抑制浓度指数≤0.5)。此外,DBL 还能明显抑制生物膜的形成,且对小鼠成纤维细胞无毒性(p < 0.05)。这些结果表明,DBL 具有抗菌活性,并能与抗生素协同作用。
{"title":"Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties","authors":"Willian F. Reis, Marcos E. S. Silva, Ana C. S. Gondim, Renato C. F. Torres, Rômulo F. Carneiro, Celso S. Nagano, Alexandre H. Sampaio, Claudener S. Teixeira, Lenita C. B. F. Gomes, Bruno L. Sousa, Alexandre L. Andrade, Edson H. Teixeira, Mayron A. Vasconcelos","doi":"10.1007/s10930-024-10199-9","DOIUrl":"https://doi.org/10.1007/s10930-024-10199-9","url":null,"abstract":"<p>In this study, we purified a lectin isolated from the seeds of <i>Dioclea bicolor</i> (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56–50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other <i>Diocleinae</i> lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of –26,642.69141/Normalized DOPE score of –1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (<i>p</i> &lt; 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Protein Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1