An Empirical Model of Ionospheric Total Electron Content Based on Tide-Like Signature Modeling

IF 3.7 2区 地球科学 Space Weather Pub Date : 2023-12-07 DOI:10.1029/2023sw003564
Haibing Ruan, Jiuhou Lei, Jianyong Lu, Fen Tang
{"title":"An Empirical Model of Ionospheric Total Electron Content Based on Tide-Like Signature Modeling","authors":"Haibing Ruan, Jiuhou Lei, Jianyong Lu, Fen Tang","doi":"10.1029/2023sw003564","DOIUrl":null,"url":null,"abstract":"Accurate modeling of the total electron content (TEC) benefits scientific research and practical application. In this study, the global ionospheric maps from the Center for Orbit Determination of Europe (CODE) covering the years 2000–2021 are utilized to develop an empirical model of TEC by superposing the tide-like components in the ionosphere. The tide-like components, including the migrating and non-migrating ones, are first derived from the daily CODE TEC data. Then, the sine and cosine components of a tide-like signature are separately decomposed into the basic modes as a function of the modified inclination latitude with the principle component analysis, and the temporal evolution is regressed to the solar radiation dependence and interannual variation. As such, the climatological behavior of tidal amplitudes and phases could be well parameterized, and the developed model is capable of reproducing the global TEC patterns. The modeled TEC agrees well with the CODE input data with zero systematic error and a low root mean square error of 3.849 TECu, demonstrating a good model performance. This developed model, associated with the parametric tide-like signatures, could serve as a background for future investigations of the ionospheric responses to the forcing from below or above.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003564","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate modeling of the total electron content (TEC) benefits scientific research and practical application. In this study, the global ionospheric maps from the Center for Orbit Determination of Europe (CODE) covering the years 2000–2021 are utilized to develop an empirical model of TEC by superposing the tide-like components in the ionosphere. The tide-like components, including the migrating and non-migrating ones, are first derived from the daily CODE TEC data. Then, the sine and cosine components of a tide-like signature are separately decomposed into the basic modes as a function of the modified inclination latitude with the principle component analysis, and the temporal evolution is regressed to the solar radiation dependence and interannual variation. As such, the climatological behavior of tidal amplitudes and phases could be well parameterized, and the developed model is capable of reproducing the global TEC patterns. The modeled TEC agrees well with the CODE input data with zero systematic error and a low root mean square error of 3.849 TECu, demonstrating a good model performance. This developed model, associated with the parametric tide-like signatures, could serve as a background for future investigations of the ionospheric responses to the forcing from below or above.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于潮汐样特征建模的电离层总电子含量经验模型
电子总含量(TEC)的精确建模有利于科学研究和实际应用。在本研究中,利用欧洲轨道测定中心(CODE)提供的 2000-2021 年全球电离层地图,通过叠加电离层中的类潮成分,建立了一个 TEC 经验模型。首先从 CODE 的每日 TEC 数据中得出类潮成分,包括迁移和非迁移成分。然后,利用原理成分分析法将类潮特征的正弦和余弦成分分别分解为与修正倾角纬度函数相关的基本模式,并将其时间演变与太阳辐射相关性和年际变化进行回归。因此,潮汐振幅和相位的气候学行为可以很好地参数化,所建立的模式能够再现全球 TEC 模式。模拟的 TEC 与 CODE 输入数据非常吻合,系统误差为零,均方根误差为 3.849 TECu,显示了模型的良好性能。所建立的这一模型与类似潮汐的参数特征相关联,可作为今后研究电离层对来自下方或上方的强迫的响应的背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1